cfl_types.h
Go to the documentation of this file.
1 /** @file cfl_types.h Runtime interface, faudes types */
2 
3 /* FAU Discrete Event Systems Library (libfaudes)
4 
5 Copyright (C) 2009 Ruediger Berndt
6 Copyright (C) 2010, 2024 Thomas Moor
7 
8 This library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12 
13 This library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17 
18 You should have received a copy of the GNU Lesser General Public
19 License along with this library; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
21 
22 
23 #ifndef FAUDES_RTITYPES_H
24 #define FAUDES_RTITYPES_H
25 
26 #include <list>
27 #include <string>
28 #include <vector>
29 #include <map>
30 #include <utility>
31 #include <string>
32 #include <iostream>
33 #include <typeinfo>
34 #include <algorithm>
35 
36 #include "cfl_definitions.h"
37 #include "cfl_token.h"
38 #include "cfl_tokenreader.h"
39 #include "cfl_tokenwriter.h"
40 #include "cfl_exception.h"
41 
42 
43 
44 namespace faudes {
45 
46 
47 /************************************************
48  ************************************************
49  ************************************************/
50 
51 
52 /**
53 @defgroup RunTimeInterface Run-Time Interface
54 @section RunTimeInterface Run-Time Interface
55 
56 The libFAUDES run-time interface (RTI) facilitates the development
57 of applications that are transparent to libFAUDES extensions, e.g.,
58 the libFAUDES version of the Lua interpreter luafaudes and the
59 graphical user interface DESTool.
60 
61 The run-time interface provides a TypeRegistry for the application
62 to instantiate objects by specifying their type as a std::string.
63 The TypeRegistry is accompanied by the FunctionRegistry for
64 the application to execute functions by their name. Thus, a libFAUDES
65 application can query both registries and provide the
66 supported types and functions to the user.
67 The <a href="../reference/index.html">libFAUDES user-reference</a>
68 is set up by the build system to represent the contents of both
69 registries.
70 
71 The run-time interface is implemented
72 by the following components:
73 - base class faudes::Type for RTI enabled classes (faudes-types)
74 - documentation class faudes::TypeDefinition to accompany faudes-types;
75 - container class faudes::TypeRegistry to hold faudes::TypeDefintiion objects;
76 - base class faudes::Function for RTI enabled function wrappers (faudes-functions);
77 - documentation class faudes::FunctionDefinition to accompany faudes-functions;
78 - container class faudes::FunctionRegistry to hold FunctionDefintiion objects.
79 
80 @subsection RunTimeInterfaceSec2 Faudes-Types
81 
82 Classes that participate in the run-time interface are referred to
83 as faudes-types, instances are so called faudes-objects. Any faudes-type must
84 be derived from the base class faudes::Type. A faudes-type inherits
85 the convenience interface for token IO from Type, and, most relevent for the run-time
86 interface, the factory function New(): each faudes-types must reimplement New()
87 to allocate a new object of their respective type on heap. For a fully functional
88 faudes-type, also an appropriate assignment operator and a copy constructor
89 are required.
90 
91 
92 @subsection RunTimeInterfaceSec3 Faudes-Type Definitions
93 
94 A faudes-type is accompanied by an instance of faudes::TypeDefinition. It holds
95 a name (std::string) to identify the faudes-type,
96 documentation (short text and html reference),
97 and one faudes-object of the respective faudes-type.
98 The latter is referred to as the prototype object and its New() method is used to construct
99 new faudes-objects of the respective faudes-type. Thus, given a TypeDefinition,
100 one can instantiate a corresponding faudes-object. To setup a
101 TypeDefinition, you are meant to provide the faudes-type name, the protototype
102 and a file from which to read the documentation.
103 
104 
105 @subsection RunTimeInterfaceSec4 Faudes-Functions and Faudes-Function Definitions
106 
107 Functions that participate in the run-time interface are organized similar
108 to faudes-types. There is a base class faudes::Function from which to derive
109 particular faudes-functions. The base class provides an interface to set
110 function parameter values and to actually execute the function on the parameters.
111 To derive a class from Function, you must reimplement the methods New(), DoTypeCheck(),
112 and DoExecute(). The DoTypeCheck method is supposed to use a dynamic cast
113 to initialize typed references to the function parameters. The DoExecute method
114 then executes the function, typically by invoking a function via its
115 C++ API. Each Function class is accompanied by a faudes::FunctionDefinition instance
116 which holds a prototype, basic documentation and a list of valid signatures. Each signature
117 represents a valid parameter type configurations in terms of faudes-types.
118 
119 @subsection RunTimeInterfaceSec5 Type- and Function-Registry
120 
121 The faudes::TypeRegistry and the faudes::FunctionRegistry are containers for TypeDefinition
122 and FunctionDefinition instances, respectively. Applications access the registries via
123 faudes-type names and faudes-function names, see e.g. the global functions NewObject() and
124 NewFunction(). There is also in interface to iterate through the regsitries and
125 to test for the existence of an entry. However, while both registries inherit the std token-io
126 interface, neither registry can be fully configured by reading from file. This is because
127 each entry requires not only data (documentation, signature, etc) but also a prototype
128 instance. The std C++ run-time type information (RTTI) does not provide a mechanism
129 to instantiate an object of a class that is specified at runtime. Thus, each protototype
130 must be defined at compiletime. The global function LoadRegistry() is automatically
131 set-up by the build system to gather all relevant prototypes, insert them in the
132 registries and to subsequently read further documentation from a configuration
133 file.
134 
135 @subsection RunTimeInterfaceSec6 RTI and the Build System
136 
137 At stage <tt>make configure</tt>, the build system sets up the function LoadRegistry()
138 by
139 - setting the macro FAUDES_PLUGINS_RTILOAD to a list of function calls in order to invoke
140  one load function per plugin;
141 - running the tool <tt>rti2code</tt> to generate c code to register faudes-types and-functions
142  found in the configuration file ("libfaudes.rti").
143 
144 Code generation should work for all types and functions with documentation entry "CType()" specified.
145 Since there is only one CType() entry, all signatures of a function must be implemented by a single
146 c-function. The generated code is placed at "./include/rtiautoload.*". The build system also provides
147 support to merge the configuration "libfaudes.rti" file from various sources, incl. plugins.
148 
149 To have your C++ class participate in the libFAUDES run-time interface:
150 
151 -# derive your class from faudes::Type;
152 -# make sure your class has a public default constructor and a public copy constructor;
153 -# use the provided macros to reimplement the virtual functions New(), Copy(), Cast(),
154  Assign(), Equal(), and the acording operators =, == and !=;
155 -# reimplement the virtual functions DoAssign(), DoEqual(), DoRead(), DoWrite() and Clear();
156 -# optionally, reimplement the alternative output formats DoDWrite(), DoSWrite(), DoXWrite()
157 -# provide an .rti file for the formal TypeDefinition;
158 -# supplement your .rti file by an HTML formated documentation text;
159 
160 You will need to inspect and edit the main Makefile or your plugin's Makefile
161 to advertise your additional sources. A <tt>make configure</tt> will then
162 assemble all the bits and pieces.
163 
164 To have your C++ function participate in the libFAUDES run-time interface:
165 
166 -# make sure all your parameters are faudes-types (exceptions being
167  the elementary types bool, string and integer, which are converted automatically);
168 -# provide an .rti file for the formal FunctionDefinition, advertise this file;
169  either in the main Makefile or in the Makefile of your plugin;
170 -# supplement yout .rti file by an html formated documentation text;
171 
172 
173 */
174 
175 // forward
176 class TypeDefinition;
177 
178 /**
179  * Base class of all libFAUDES objects that participate in
180  * the run-time interface. Eg, generator, alphabet, attributes etc.
181  * The class is designed to impose as little overhead as possible, and
182  * hence, does not hold any data. It does, however, provide a
183  * uniform interface for assignment, factory functions, and token IO.
184  * There is a tread-off in designing a common base class regarding features
185  * vs. overhead. We provide a comparatively light faudes::Type with minimal
186  * overhead and a more featured version faudes::FullType.
187  *
188  * We think of a faudes-typed object to be configured by defining
189  * data and, in due course, manipulated via its public interface
190  * by faudes-functions. Any faudes-type must provide a Clear() method that
191  * resets the object configuration to a unique default value.
192  * It is the configuration data that can be read from and written to token
193  * streams, and it is the configuration data that is used for assigments.
194  * Any additional data a faudes-typed object may host, is ignored by the
195  * interface inherited from the the base faudes::Type. Examples for such
196  * additional data is the unique id of a Generator, and the deferred copy
197  * pointers in faudes sets derived from faudes::TBaseSet.
198  *
199  * The faudes::Type assignment semantics are not meant to create exact copies
200  * of a given source object. Thogether with the uniquely defined default value,
201  * we can have assignments by both up- and downcasts. A faudes::Generator can be
202  * assigned from the derived faudes::System (a Generator with controllability
203  * attributes) by dropping the extra features. Vice versa, when a System is assigned
204  * from a plain Generator, any extra features take their respective default values.
205  * This relaxed interpretation of assignments is implemented by the method
206  * Assign(). The token format for file IO is organised in a similar fashion: any generator
207  * derivate can be configured from the token stream produced by any other generator class.
208  * In contrast, faudes-typed objects also implement an assignment operator
209  * that uses the standard C++ conventions.
210  *
211  * The following methods are used to implement the faudes::Type interface:
212  *
213  * - DoRead() to read the defining data from a token stream
214  * - DoWrite() to write the defining data to a token stream
215  * - DoXWrite() to write the defining data to a token stream in an alternative XML format
216  * - DoSWrite() and DoDWrite for alternative output formats (statistical summary and debugging)
217  *
218  * - Name() to get/set the name of an optional (and purely cosmetic) object name
219  * - Clear() to reset all configuration data default,
220  * - IsDefault() test for default configuration data,
221  * - New() to construct an object of identical type on heap (factory method),
222  * - Copy() to construct an object of identical type and configuration on heap (factory method),
223  * - Cast() to dynamically cast another object to this type (type check method)
224  * - Assign() to do an assignment from any castable Type derivate
225  * - DoAssign(), or the operator "=", to assign from an object with identical type.
226  * - Equal() to test relaxed equality with any castable Type derivate
227  * - DoEqual(), or the operators "==" and "!=", to test exact equality of configuration data
228  *
229  * In most cases, only DoRead(), DoWrite(), DoAssign(), DoEqual() and Clear() need to be implemented
230  * manualy. The other methods can be declared and implemented by macros
231  * FAUDES_TYPE_DELARATION and FAUDES_TYPE_IMPLEMENTATION, respectively. The various
232  * attribute classes illustrate their ussage; see e.g. AttributeFlags.
233  *
234  *
235  *
236  * Note on token IO: In libFAUDES 2.16e, implementation of a new file format is prepared
237  * by the virtual function interface DoXWrite(). The intention is to better support advanced
238  * XML editors, in particular for configuration files. When implementing DoXWrite() for a
239  * derived class, make sure that DoRead() will gracefully accept tokens written by both DoWrite()
240  * and DoXWrite(), as a basis for a fileformat conversion tool. Future versions of libFAUDES will drop
241  * compatibility with the old token format, except for model data (generators, alphabets).
242  *
243  * @ingroup RunTimeInterface
244  */
245 
247 
248  public:
249 
250  /** Constructor */
251  Type(void);
252 
253  /** Copy constructor */
254  Type(const Type& rType);
255 
256  /** Destructor */
257  virtual ~Type(void);
258 
259  /**
260  * Construct on heap.
261  * Technically not a constructor, this function creates an object with the
262  * same type Type. New() is defined as a virtual function and derived
263  * classes are meant to re-implement with the appropiate constructor.
264  * This can be done via the provided macros FAUDES_TYPE_DECLARATION and
265  * FAUDES_TYPE_IMPLEMENTATION.
266  * As with new, it is the callers reponsabilty to delete the object when no longer needed.
267  *
268  * @return
269  * Pointer to new Type object
270  */
271  virtual Type* New(void) const;
272 
273  /**
274  * Construct on heap.
275  * Technically not a constructor, this function creates an object with the
276  * same type Type and the same configuration. Copy() is defined as a virtual function and derived
277  * classes are meant to re-implement with the appropiate copy constructor.
278  * This can be done via the provided macros FAUDES_TYPE_DECLARATION and
279  * FAUDES_TYPE_IMPLEMENTATION.
280  * As with new, it is the callers reponsabilty to delete the object when no longer needed.
281  *
282  * @return
283  * Pointer to new Type object
284  */
285  virtual Type* Copy(void) const;
286 
287  /**
288  * Cast other object to this type.
289  * Enables the run-time interface to test whether pObject is derived
290  * from this object. This feature is used e.g. in the faudes container
291  * classes to test attributes. Derived classes must reimplement this
292  * function using the appropriate dynamic cast.
293  *
294  * Re-implementation can be done via the convenience macros
295  * FAUDES_TYPE_DECLARATION and FAUDES_TYPE_IMPLEMENTATION.
296  *
297  * @return
298  * Typed pointer object
299  */
300  virtual const Type* Cast(const Type* pOther) const;
301 
302  /**
303  * Clear configuration data to default. Derived classes should re-implement this
304  * method to ensure some consistent configuration data.
305  */
306  virtual void Clear(void);
307 
308  /**
309  * Test for default configuration data. Derived classes may reimplement this
310  * conservatively, i.e., false negatives should be acceptable.
311  ^
312  * Note may refactor to IsClear[ed]()?
313  */
314  virtual bool IsDefault(void) const;
315 
316  /**
317  * Assign configuration data from other object.
318  * Derived classes should reimplement this method to first try to cast
319  * the source to the respective class. If successful, the protected
320  * function DoAssign is invoked to perform the actual assignment. If the cast fails,
321  * the Assign method of the parent class is called. Thus, faudes
322  * objects are up- and downcatsed for assignment, maintaining as much of
323  * the source data as digestable by the destination object. On the downside,
324  * there is no sensible typechecking at compile-time.
325  *
326  * Re-implementation can be done via the convenience macros
327  * FAUDES_TYPE_DECLARATION and FAUDES_TYPE_IMPLEMENTATION.
328  *
329  * @param rSrc
330  * Source to copy from
331  * @return Reference to this object.
332  */
333  virtual Type& Assign(const Type& rSrc);
334 
335 
336  /**
337  * Assign configurationdata from other object.
338  * Derived classes should implement the operator form for the assignment
339  * for each source type which allows for a non-trivial assignment. This includes
340  * the particular case were the source and destination types match exactly. In the
341  * latter case the DoAssign method should be invoked. In contrast to
342  * the Assign function, the operator form must not be reimplemented for
343  * missmatched source types: the operator form only accepts sensible source types.
344  * This allows for compiletime typeckecking. However, the downside is that
345  * when the type is not known at compiletime, configuration is not properly
346  * assigned.
347  *
348  * Re-implementation can be done via the convenience macros
349  * FAUDES_TYPE_DECLARATION and FAUDES_TYPE_IMPLEMENTATION.
350  *
351  * @param rSrc
352  * Source to copy from
353  * @return Reference to this object.
354  */
355  Type& operator=(const Type& rSrc);
356 
357  /**
358  * Test equality of configuration data.
359  * Derived classes should reimplement this method to return true
360  * if both actual types and configuration data match.
361  * The object name or id (if any) is not considered in the test.
362  *
363  * This method calls the virtual method DoEqual(). Re-implementation can
364  * be done via the convenience macros
365  * FAUDES_TYPE_DECLARATION and FAUDES_TYPE_IMPLEMENTATION.
366  *
367  * @param rOther
368  * Other object to compare with.
369  * @return
370  * True on match.
371  */
372  virtual bool Equal(const Type& rOther) const;
373 
374  /**
375  * Test equality of configuration data.
376  * The operator form of the equality test is only defined for matching
377  * types, no cast will be performed. Thus, the test will be optimistic
378  * if the type is not known at compiletime.
379  * The object name or id is not considered in the test.
380  *
381  * This methoc calls the virtual method DoEqual(). Re-implementation can
382  * be done via the convenience macros
383  * FAUDES_TYPE_DECLARATION and FAUDES_TYPE_IMPLEMENTATION.
384  *
385  * @param rOther
386  * Other object to compare with.
387  * @return
388  * True on match.
389  */
390  bool operator==(const Type& rOther) const;
391 
392 
393  /**
394  * Test equality of configuration data.
395  * See operator==(const Type&).
396  *
397  * This method calls the virtual method DoEqual(). Re-implementation can
398  * be done via the convenience macros
399  * FAUDES_TYPE_DECLARATION and FAUDES_TYPE_IMPLEMENTATION.
400  *
401  * @param rOther
402  * Other objevt to compare with.
403  * @return
404  * True on mismatch.
405  */
406  bool operator!=(const Type& rOther) const;
407 
408 
409  /**
410  * Set the objects's name.
411  *
412  * faudes::Type does not implement an object name,
413  * derivatives usually do so. See also faudes::Type.
414  *
415  * @param rName
416  * Name
417  */
418  virtual void Name(const std::string& rName);
419 
420  /**
421  * Get objects's name.
422  *
423  * faudes::Type does not implement an object name,
424  * derivatives usually do so. See also faudes::Type.
425  *
426  * @return
427  * Name of object
428  */
429  virtual const std::string& Name(void) const;
430 
431  /**
432  * Get objects's type name.
433  *
434  * Retrieve the faudes-type name from the type registry.
435  * This method silently returns the empty string if the type is
436  * not (yet) registered. The derived class faudes::Type implements
437  * a cache to avoid repeating the log-n lookup.
438  *
439  * @return
440  * Faudes-type name or empty string.
441  */
442  virtual const std::string& TypeName(void) const;
443 
444  /**
445  * Write configuration data to console.
446  * Note: this write function uses the virtual function DoWrite(), to be
447  * reimplemented by derived classes.
448  *
449  * @param pContext
450  * Write context to provide contextual information
451  *
452  */
453  void Write(const Type* pContext=0) const;
454 
455  /**
456  * Write configuration data to a file.
457  * Note: this write function uses the virtual function DoWrite(), to be
458  * reimplemented by derived classes.
459  *
460  * @param pFileName
461  * Name of file
462  * @param rLabel
463  * Label of section to write
464  * @param pContext
465  * Write context to provide contextual information
466  * @param openmode
467  * ios::openmode
468  *
469  * @exception Exception
470  * - IO errors (id 2)
471  */
472  void Write(const std::string& pFileName, const std::string& rLabel="",
473  const Type* pContext=0, std::ios::openmode openmode = std::ios::out|std::ios::trunc) const;
474 
475  /**
476  * Write configuration data to a file.
477  * Note: this write function uses the virtual function DoWrite(), to be
478  * reimplemented by derived classes.
479  *
480  * @param pFileName
481  * Name of file
482  * @param openmode
483  * ios::openmode
484  *
485  * @exception Exception
486  * - IO errors (id 2)
487  */
488  void Write(const std::string& pFileName, std::ios::openmode openmode) const;
489 
490  /**
491  * Write configuration data to TokenWriter.
492  * Note: this write function uses the virtual function DoWrite(), to be
493  * reimplemented by derived classes.
494  *
495  * @param rTw
496  * Reference to TokenWriter
497  * @param rLabel
498  * Label of section to write
499  * @param pContext
500  * Write context to provide contextual information
501  *
502  * @exception Exception
503  * - IO errors (id 2)
504  */
505  void Write(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
506 
507  /**
508  * Write configuration data to an XML file.
509  * Note: this method uses the faudes type to set a DOCTYPE markup; for derived classes
510  * which do not report their faudes type, you should reimplement this
511  * function. Actual token io is done via DoXWrite().
512  *
513  * @param pFileName
514  * Name of file
515  * @param rLabel
516  * Label of section to write
517  * @param pContext
518  * Write context to provide contextual information
519  *
520  * @exception Exception
521  * - IO errors (id 2)
522  */
523  virtual void XWrite(const std::string& pFileName, const std::string& rLabel="",
524  const Type* pContext=0) const;
525 
526  /**
527  * Write configuration data in XML format to concole
528  * Note: this write function uses the virtual function DoXWrite(), to be
529  * reimplemented by derived classes. No DOCTYPE markup will be written.
530  *
531  * @param pContext
532  * Write context to provide contextual information
533  *
534  */
535  void XWrite(const Type* pContext=0) const;
536 
537  /**
538  * Write configuration data in XML format to TokenWriter.
539  * Note: this write function uses the virtual function DoXWrite(), to be
540  * reimplemented by derived classes.
541  *
542  * @param rTw
543  * Reference to TokenWriter
544  * @param rLabel
545  * Label of section to write
546  * @param pContext
547  * Write context to provide contextual information
548  *
549  * @exception Exception
550  * - IO errors (id 2)
551  */
552  void XWrite(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
553 
554  /**
555  * Write configuration data to a string.
556  * Note: this write function uses the virtual function DoWrite(), to be
557  * reimplemented by derived classes.
558  *
559  * @param rLabel
560  * Label of section to write
561  * @param pContext
562  * Write context to provide contextual information
563  * @return
564  * output string
565  * @exception Exception
566  * - IO errors (id 2)
567  */
568  std::string ToString(const std::string& rLabel="", const Type* pContext=0) const;
569 
570  /**
571  * Write configuration data to a formated string.
572  * In contrast to ToString, ToText does not suppress comments and
573  * End-Of-Line marks.
574  * Note: this write function uses the virtual function DoWrite(), to be
575  * reimplemented by derived classes.
576  *
577  * @param rLabel
578  * Label of section to write
579  * @param pContext
580  * Write context to provide contextual information
581  * @return
582  * output string
583  * @exception Exception
584  * - IO errors (id 2)
585  */
586  std::string ToText(const std::string& rLabel="", const Type* pContext=0) const;
587 
588  /**
589  * Write configuration data to console, debugging format.
590  * Note: this write function uses the virtual function DoDWrite(), to be
591  * reimplemented by derived classes.
592  *
593  * @param pContext
594  * Write context to provide contextual information
595  *
596  */
597  void DWrite(const Type* pContext=0) const;
598 
599  /**
600  * Write configuration data to a file, debugging format.
601  * Note: this write function uses the virtual function DoDWrite(), to be
602  * reimplemented by derived classes.
603  *
604  * @param pFileName
605  * Name of file
606  * @param rLabel
607  * Label of section to write
608  * @param pContext
609  * Write context to provide contextual information
610  * @param openmode
611  * ios::openmode
612  *
613  * @exception Exception
614  * - IO errors (id 2)
615  */
616  void DWrite(const std::string& pFileName, const std::string& rLabel="",
617  const Type* pContext=0, std::ios::openmode openmode = std::ios::out|std::ios::trunc) const;
618 
619  /**
620  * Write configuration data in debug format to TokenWriter.
621  * Note: this write function uses the virtual function DoWrite(), to be
622  * reimplemented by derived classes.
623  *
624  * @param rTw
625  * Reference to TokenWriter
626  * @param rLabel
627  * Label of section to write
628  * @param pContext
629  * Write context to provide contextual information
630  *
631  * @exception Exception
632  * - IO errors (id 2)
633  */
634  void DWrite(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
635 
636  /**
637  * Write statistics comment to TokenWriter.
638  * Note: this write function use the virtual function DoSWrite(), to be
639  * reimplemented by derived classes.
640  *
641  * @param rTw
642  * Reference to TokenWriter
643  *
644  * @exception Exception
645  * - IO errors (id 2)
646  */
647  void SWrite(TokenWriter& rTw) const;
648 
649  /**
650  * Write statistics comment to console.
651  * Note: this write function uses the virtual function DoSWrite(), to be
652  * reimplemented by derived classes.
653  *
654  */
655  void SWrite(void) const;
656 
657  /**
658  * Write statistics to a string.
659  * Note: this write function uses the virtual function DoSWrite(), to be
660  * reimplemented by derived classes.
661  *
662  * @return
663  * output string
664  * @exception Exception
665  * - IO errors (id 2)
666  */
667  std::string ToSText(void) const;
668 
669  /**
670  * Read configuration data from file with label specified.
671  * Note: all read functions use the virtual function DoRead(), to be
672  * reimplemented for by derived classes.
673  *
674  * @param rFileName
675  * Name of file
676  * @param rLabel
677  * Section to read from
678  * @param pContext
679  * Read context to provide contextual information
680  *
681  * @exception Exception
682  * - IO errors (id 1)
683  * - token mismatch from DoRead()
684  */
685  void Read(const std::string& rFileName, const std::string& rLabel = "", const Type* pContext=0);
686 
687  /**
688  * Read configuration data from a string.
689  * Note: this read function uses the virtual function DoRead(), to be
690  * reimplemented by derived classes.
691  *
692  * @param rString
693  * String to read from
694  * @param rLabel
695  * Section to read
696  * @param pContext
697  * Read context to provide contextual information
698  * @exception Exception
699  * - IO errors (id 1)
700  * - token mismatch from DoRead()
701  */
702  void FromString(const std::string& rString, const std::string& rLabel="", const Type* pContext=0);
703 
704  /**
705  * Read configuration data from TokenReader with label sepcified.
706  * Note: all read functions use the virtual function DoRead(), to be
707  * reimplemented for by derived classes.
708  *
709  * @param rTr
710  * Reference to tokenreader
711  * @param rLabel
712  * Section to read
713  * @param pContext
714  * Read context to provide contextual information
715  *
716  * @exception Exception
717  * - IO errors (id 1)
718  * - token mismatch from DoRead()
719  */
720  void Read(TokenReader& rTr, const std::string& rLabel = "", const Type* pContext=0);
721 
722 
723  protected:
724 
725  /**
726  * Assign configuration data from other object.
727  *
728  * Reimplement this function to copy all configuration data from
729  * another faudes object. Typically, you will first call the base class'
730  * DoAssign, which includes a Clear(). Then, you will set up any additional members.
731  *
732  * @param rSrc
733  * Source to copy from
734  */
735  void DoAssign(const Type& rSrc);
736 
737  /**
738  * Test equality of configuration data.
739  * Derived classes should reimplement this method to compare all relevant
740  * configuration, except the name.
741  *
742  * @param rOther
743  * Other object to compare with.
744  * @return
745  * True on match.
746  */
747  bool DoEqual(const Type& rOther) const;
748 
749 
750  /**
751  * Read configuration data of this object from TokenReader.
752  *
753  * Reimplement this method in derived classes to provide the std token io
754  * interface defined in the public section of Type.
755  *
756  * @param rTr
757  * TokenReader to read from
758  * @param rLabel
759  * Section to read
760  * @param pContext
761  * Read context to provide contextual information
762  *
763  * @exception Exception
764  * - IO error (id 1)
765  */
766  virtual void DoRead(TokenReader& rTr, const std::string& rLabel = "", const Type* pContext=0);
767 
768  /**
769  * Write configuration data of this object to TokenWriter.
770  *
771  * Reimplement this method in derived classes to provide the std token io
772  * interface defined in the public section of Type.
773  *
774  * @param rTw
775  * Reference to TokenWriter
776  * @param rLabel
777  * Label of section to write
778  * @param pContext
779  * Write context to provide contextual information
780  *
781  * @exception Exception
782  * - IO errors (id 2)
783  */
784  virtual void DoWrite(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
785 
786  /**
787  * Write configuration data of this object to TokenWriter in XML format.
788  *
789  * Reimplement this method in derived classes to provide the XML
790  * token io interface defined in the public section of Type. The default implementation
791  * invokes the std token output via
792  * DoWrite(TokenWriter&, const std::string&,const Type* )
793  *
794  * @param rTw
795  * Reference to TokenWriter
796  * @param rLabel
797  * Label of section to write
798  * @param pContext
799  * Write context to provide contextual information
800  *
801  * @exception Exception
802  * - IO errors (id 2)
803  */
804  virtual void DoXWrite(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
805 
806  /**
807  * Write configuration data in debugging format to TokenWriter.
808  *
809  * Reimplement this method in derived classes to provide the std token io
810  * interface defined in the public section of Type.
811  *
812  * @param rTw
813  * Reference to TokenWriter
814  * @param rLabel
815  * Label of section to write
816  * @param pContext
817  * Write context to provide contextual information
818  *
819  * @exception Exception
820  * - IO errors (id 2)
821  */
822  virtual void DoDWrite(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
823 
824  /**
825  * Write statistical data as a comment to TokenWriter.
826  *
827  * Reimplement this method in derived classes to provide the std token io
828  * interface defined in the public section of Type.
829  *
830  * @param rTw
831  * Reference to TokenWriter
832  *
833  * @exception Exception
834  * - IO errors (id 2)
835  */
836  virtual void DoSWrite(TokenWriter& rTw) const;
837 
838  /**
839  * Get objects's type definition.
840  *
841  * Returns the type definition corresponding to this object, or
842  * NULL if the object is not of a registered type.
843  *
844  * Technical note: for minimal memory requirement, the type definition
845  * is not cached but retrieved on every invokation of this method.
846  * The derived class faudes::Type introduces a cache.
847  *
848  * @return
849  * Type definition reference.
850  */
851  virtual const TypeDefinition* TypeDefinitionp(void) const;
852 
853 
854  /*
855  * Convenience function to set up std begin token
856  * for XML mode token I/O.
857  *
858  * @param rLabel
859  * User specified label
860  * @param rFallbackLabel
861  * Class defined fallback label
862  * @return
863  * Configured begin token
864  */
865  virtual Token XBeginTag(const std::string& rLabel="", const std::string& rFallbackLabel="") const;
866 
867 
868 private:
869 
870  // static string constant.
871  static std::string msStringVoid;
872  static std::string msStringEmpty;
873 
874 };
875 
876 
877 
878 /** faudes type declaration macro */
879 #define FAUDES_TYPE_DECLARATION(ftype,ctype,cbase) \
880  public: virtual ctype* New(void) const; \
881  public: virtual ctype* Copy(void) const; \
882  public: virtual const Type* Cast(const Type* pOther) const; \
883  public: virtual ctype& Assign(const Type& rSrc); \
884  public: virtual bool Equal(const Type& rOther) const; \
885  public: ctype& operator=(const ctype& rSrc); \
886  public: bool operator==(const ctype& rOther) const; \
887  public: bool operator!=(const ctype& rOther) const;
888 
889 /** faudes type declaration macro, template version */
890 #define FAUDES_TYPE_TDECLARATION(ftype,ctype,cbase) \
891  public: virtual ctype* New(void) const; \
892  public: virtual ctype* Copy(void) const; \
893  public: virtual const Type* Cast(const Type* pOther) const; \
894  public: virtual ctype& Assign(const Type& rSrc); \
895  public: virtual bool Equal(const Type& rOther) const; \
896  public: ctype& operator=(const ctype& rSrc); \
897  public: bool operator==(const ctype& rOther) const; \
898  public: bool operator!=(const ctype& rOther) const;
899 
900 /** faudes type implementation macros */
901 #define FAUDES_TYPE_IMPLEMENTATION_NEW(ftype,ctype,cbase) \
902  ctype* ctype::New(void) const { return new ctype(); }
903 #define FAUDES_TYPE_IMPLEMENTATION_COPY(ftype,ctype,cbase) \
904  ctype* ctype::Copy(void) const { return new ctype(*this); }
905 #define FAUDES_TYPE_IMPLEMENTATION_CAST(ftype,ctype,cbase) \
906  const Type* ctype::Cast(const Type* pOther) const { \
907  return dynamic_cast< const ctype * >(pOther); }
908 #define FAUDES_TYPE_IMPLEMENTATION_ASSIGN(ftype,ctype,cbase) \
909  ctype& ctype::Assign(const Type& rSrc) { \
910  if(const ctype* csattr=dynamic_cast< const ctype * >(&rSrc)) { \
911  /* this->Clear(); */ DoAssign(*csattr);} \
912  else { \
913  cbase::Assign(rSrc);}; \
914  return *this;} \
915  ctype& ctype::operator=(const ctype& rSrc) { /* this->Clear() */; DoAssign(rSrc); return *this; }
916 #define FAUDES_TYPE_IMPLEMENTATION_EQUAL(ftype,ctype,cbase) \
917  bool ctype::Equal(const Type& rOther) const { \
918  if(&rOther==this) return true; \
919  if(typeid(rOther) != typeid(*this)) return false; \
920  const ctype* csattr=dynamic_cast<const ctype*>(&rOther); \
921  if(!csattr) return false; \
922  if(!DoEqual(*csattr)) return false; \
923  return true;} \
924  bool ctype::operator==(const ctype& rOther) const { return DoEqual(rOther); } \
925  bool ctype::operator!=(const ctype& rOther) const { return !DoEqual(rOther); }
926 
927 /** faudes type implementation macros, template version */
928 #define FAUDES_TYPE_TIMPLEMENTATION_NEW(ftype,ctype,cbase,ctemp) \
929  ctemp ctype* ctype::New(void) const { \
930  return new ctype(); }
931 #define FAUDES_TYPE_TIMPLEMENTATION_COPY(ftype,ctype,cbase,ctemp) \
932  ctemp ctype* ctype::Copy(void) const { \
933  return new ctype(*this); }
934 #define FAUDES_TYPE_TIMPLEMENTATION_CAST(ftype,ctype,cbase,ctemp) \
935  ctemp const Type* ctype::Cast(const Type* pOther) const { \
936  return dynamic_cast< const ctype * >(pOther); }
937 #define FAUDES_TYPE_TIMPLEMENTATION_ASSIGN(ftype,ctype,cbase,ctemp) \
938  ctemp ctype& ctype::Assign(const Type& rSrc) { \
939  if(const ctype* csattr=dynamic_cast< const ctype * >(&rSrc)) { \
940  /* this->Clear(); */ DoAssign(*csattr);} \
941  else { \
942  cbase::Assign(rSrc);}; \
943  return *this;} \
944  ctemp ctype& ctype::operator=(const ctype& rSrc) { /* this->Clear(); */ DoAssign(rSrc); return *this; }
945 #define FAUDES_TYPE_TIMPLEMENTATION_EQUAL(ftype,ctype,cbase,ctemp) \
946  ctemp bool ctype::Equal(const Type& rOther) const { \
947  if(&rOther==this) return true; \
948  if(typeid(rOther) != typeid(*this)) return false; \
949  const ctype* csattr=dynamic_cast<const ctype*>(&rOther); \
950  if(!csattr) return false; \
951  if(!DoEqual(*csattr)) return false; \
952  return true;} \
953  ctemp bool ctype::operator==(const ctype& rOther) const { return DoEqual(rOther); } \
954  ctemp bool ctype::operator!=(const ctype& rOther) const { return !DoEqual(rOther); }
955 
956 
957 /** faudes type implementation macros, overall */
958 #define FAUDES_TYPE_IMPLEMENTATION(ftype,ctype,cbase) \
959  ctype* ctype::New(void) const { \
960  return new ctype(); } \
961  ctype* ctype::Copy(void) const { \
962  return new ctype(*this); } \
963  const Type* ctype::Cast(const Type* pOther) const { \
964  return dynamic_cast< const ctype * >(pOther); } \
965  ctype& ctype::Assign(const Type& rSrc) { \
966  if(const ctype* csattr=dynamic_cast< const ctype * >(&rSrc)) { \
967  /* this->Clear(); */ this->DoAssign(*csattr);} \
968  else { \
969  cbase::Assign(rSrc);}; \
970  return *this;} \
971  ctype& ctype::operator=(const ctype& rSrc) { /* this->Clear(); */ this->DoAssign(rSrc); return *this; } \
972  bool ctype::Equal(const Type& rOther) const { \
973  if(&rOther==this) return true; \
974  if(typeid(rOther) != typeid(*this)) return false; \
975  const ctype* csattr=dynamic_cast<const ctype*>(&rOther); \
976  if(!csattr) return false; \
977  if(!this->DoEqual(*csattr)) return false; \
978  return true;} \
979  bool ctype::operator==(const ctype& rOther) const { return this->DoEqual(rOther); } \
980  bool ctype::operator!=(const ctype& rOther) const { return !this->DoEqual(rOther); }
981 
982 
983 /** faudes type implementation macros, overall */
984 #define FAUDES_TYPE_TIMPLEMENTATION(ftype,ctype,cbase,ctemp) \
985  ctemp ctype* ctype::New(void) const { \
986  return new ctype(); } \
987  ctemp ctype* ctype::Copy(void) const { \
988  return new ctype(*this); } \
989  ctemp const Type* ctype::Cast(const Type* pOther) const { \
990  return dynamic_cast< const ctype * >(pOther); } \
991  ctemp ctype& ctype::Assign(const Type& rSrc) { \
992  if(const ctype* csattr=dynamic_cast< const ctype * >(&rSrc)) { \
993  /* this->Clear(); */ this->DoAssign(*csattr);} \
994  else { \
995  cbase::Assign(rSrc);}; \
996  return *this;} \
997  ctemp ctype& ctype::operator=(const ctype& rSrc) { /* this->Clear(); */ this->DoAssign(rSrc); return *this; } \
998  ctemp bool ctype::Equal(const Type& rOther) const { \
999  if(&rOther==this) return true; \
1000  if(typeid(rOther) != typeid(*this)) return false; \
1001  const ctype* csattr=dynamic_cast<const ctype*>(&rOther); \
1002  if(!csattr) return false; \
1003  if(!this->DoEqual(*csattr)) return false; \
1004  return true;} \
1005  ctemp bool ctype::operator==(const ctype& rOther) const { return this->DoEqual(rOther); } \
1006  ctemp bool ctype::operator!=(const ctype& rOther) const { return !this->DoEqual(rOther); }
1007 
1008 
1009 /**
1010  * Wrapper for dynamivc_cast<Type*>() that returns a nullptr when the argument is not a
1011  * polymorphic class (instead of a compile-time error). See TBaseSet::DoWrite() for the
1012  * use case that triggered this wrapper.
1013  */
1014 template<class T, bool = std::is_polymorphic<T>::value>
1015 class CastToType {
1016 };
1017 template<class T>
1018 class CastToType<T, true> {
1019 public:
1020  static Type* Pointer(T* ptr) {return dynamic_cast<Type*>(ptr);};
1021  static const Type* ConstPointer(const T* ptr) {return dynamic_cast<const Type*>(ptr);};
1022 };
1023 template<class T>
1024  class CastToType<T,false> {
1025 public:
1026  static Type* Pointer(T* ptr) {(void) ptr; return nullptr;};
1027  static const Type* ConstPointer(const T* ptr) {(void) ptr; return nullptr;};
1028 };
1029 
1030 
1031 
1032 /**
1033  * Extended Type to base Attributes. Attributes are used as template parameters for
1034  * faudes containers and facilitate the modelling of customized properties of events,
1035  * states and transitions. See the class faudes::AttributeFlags for a non-trivial example.
1036  *
1037  * To derive a class from faudes::AttrType you should reimplement the virtual
1038  * interface
1039  * - virtual methods DoRead and DoWrite for token io (as in faudes::Type)
1040  * - virtual methods for DoAssign() (as in faudes::Type)
1041  * - the factory method New() (use provided macro from faudes::Type)
1042  * - the rti typecast method Cast() (use provided macro from faudes::Type)
1043  * - user level Assign() method (use provided macro from faudes::Type)
1044  * Use the FAUDES_TYPE_DECLARATION and FAUDES_TYPE_IMPLEMENTATION macros to generate
1045  * the API methods.
1046  *
1047  * The class faudes::AttrType extends the base Type marginally to distinguish void attributes
1048  * from plain type objects; i.e., we introduce a marker in the type hierarchy. There is (almost)
1049  * nothing functional about this class and we should find ways to go without.
1050  *
1051  * @ingroup RunTimeInterface
1052  */
1053 
1054 
1055 class FAUDES_API AttrType : public Type {
1056 
1058 
1059 public:
1060 
1061  using Type::operator=;
1062  using Type::operator==;
1063  using Type::operator!=;
1064 
1065  /** Constructor */
1066  AttrType(void);
1067 
1068  /** Copy Constructor */
1069  AttrType(const AttrType& rSrc);
1070 
1071  /** Destructor */
1072  virtual ~AttrType(void);
1073 
1074  /** Test for default value. */
1075  virtual bool IsDefault(void) const {return true;};
1076 
1077  /**
1078  * Skip attribute tokens.
1079  *
1080  * Helper method to be called after all sttribute derived classes had their
1081  * chance to read their data. It skips all tokens and sections until it reaches a
1082  * String or decimal Integer. This should go to BaseSet.
1083  *
1084  * @param rTr
1085  * TokenReader to read from
1086  * @exception Exception
1087  * - IO error (id 1)
1088  */
1089  static void Skip(TokenReader& rTr);
1090 
1091 protected:
1092 
1093  /** Assign (no members, dummy) */
1094  void DoAssign(const AttrType& rSrc) { (void) rSrc; };
1095 
1096  /** Test (no members, dummy) */
1097  bool DoEqual(const AttrType& rOther) const { (void) rOther; return true; }
1098 
1099 };
1100 
1101 
1102 /**
1103  * This class extends the base Type by common features worthwhile for "large objects",
1104  * e.g., object name, a cache for the regsitry record and convenience access wrappers.
1105  *
1106  * @ingroup RunTimeInterface
1107  */
1108 
1109 class FAUDES_API ExtType : public AttrType {
1110 
1111 public:
1112 
1113  using AttrType::operator=;
1114  using AttrType::operator==;
1115  using AttrType::operator!=;
1116 
1117 
1118  // std faudes type interface
1120 
1121  /** Constructor */
1122  ExtType(void);
1123 
1124  /** Copy constructor */
1125  ExtType(const ExtType& rType);
1126 
1127  /** Destructor */
1128  virtual ~ExtType(void);
1129 
1130  /**
1131  * Get objects name
1132  *
1133  * @return
1134  * Name
1135  */
1136  const std::string& Name(void) const;
1137 
1138  /**
1139  * Set objects name
1140  *
1141  * @param rName
1142  * Name to set
1143  */
1144  void Name(const std::string& rName);
1145 
1146 
1147  /**
1148  * Get objects's type name.
1149  *
1150  * Retrieve the faudes-type name from the type registry.
1151  *
1152  * @return
1153  * Faudes-type name or empty string.
1154  */
1155  virtual const std::string& TypeName(void) const;
1156 
1157  /**
1158  * Overwrite faudes-type name.
1159  *
1160  * This method is used to overwrite the faudes-type identifyer to account for
1161  * unregistered classe/
1162  *
1163  * @param rType
1164  * Faudes-type name to set
1165  */
1166  virtual void TypeName(const std::string& rType);
1167 
1168  /**
1169  * Get the element name tag.
1170  *
1171  * Tags used for XML IO when eriting elements of a container class.
1172  * This is either the deribeved class default of found in the registry.
1173  *
1174  * @return
1175  * Tag
1176  */
1177  virtual const std::string& ElementTag(void) const;
1178  /**
1179  * Configure the element name tag.
1180  *
1181  * This method allows to overwrite the tag used for elements
1182  * in XML IO. For usual, you will register derived classes with
1183  * the run-time-interface and set the elemen tag for XML IO.
1184  *
1185  * @param rTag
1186  * Tag to set
1187  */
1188  virtual void ElementTag(const std::string& rTag);
1189 
1190  /**
1191  * Get the element type.
1192  *
1193  * This should be found in the registry.
1194  *
1195  * @return
1196  * Tag
1197  */
1198  virtual const std::string& ElementType(void) const;
1199 
1200  /**
1201  * Get registry record
1202  *
1203  * Returns nullptr if not registered
1204  *
1205  * @return
1206  * Pointer to registry entry
1207  */
1208  virtual const TypeDefinition* TypeDefinitionp(void) const;
1209 
1210 
1211 private:
1212 
1213  /** TypeDefinition cache (should use guarded pointer here) */
1215 
1216  /** Current/cached faudes type-name */
1217  std::string mFaudesTypeName;
1218 
1219  /** Current/cached name of elements (use protected accessor methods for caching) */
1220  std::string mElementTag;
1221 
1222 protected:
1223 
1224  /** Current/cached name of elements (use protected accessor methods for caching) */
1225  std::string mElementType;
1226 
1227  /** Defauft name of elements (if not over written manually or by registry) */
1228  std::string mElementTagDef;
1229 
1230  /** object name */
1231  std::string mObjectName;
1232 };
1233 
1234 
1235 
1236 
1237 /**
1238  * Structure to hold documentation data relating to a faudes-type or -function.
1239  * This class is the common base for faudes::TypeDefinition and faudes::FunctionDefinition.
1240  * It supports token io as demonstrated by the follwoing example for a type defintion:
1241  *
1242  * @code
1243  * <TypeDefinition name="CoreFaudes::Generator" ctype="faudes::Generator">
1244  *
1245  * <Documentation ref="generators.html#plain">
1246  * The common 5 tuple G=(Sigma, Q, delta, Qo, Qm).
1247  * <Documentation/>
1248  *
1249  * <Keywords> "generator" "language" </Keywords>
1250  *
1251  * </TypeDefinition>
1252  * @endcode
1253  *
1254  * Technical detail: Documentation is derived from Type for the purpose of token IO. We
1255  * still implement the faudes type interface to make it a fully qualified faudes data type.
1256  *
1257  * Technical detail: To facilitate inheritance, token io of member data and token io of
1258  * the section tags is separated.
1259  */
1260 
1262 
1263  // std faudes type interface
1265 
1266 public:
1267 
1268  using Type::operator=;
1269  using Type::operator==;
1270  using Type::operator!=;
1271 
1272 
1273  /** Constructor */
1274  Documentation(void);
1275 
1276  /** Copy constructor */
1277  Documentation(const Documentation& rOther);
1278 
1279  /** Destructor */
1280  virtual ~Documentation(void){};
1281 
1282  /**
1283  * Clear
1284  */
1285  void Clear(void);
1286 
1287  /**
1288  * Get name of the entity to document (aka faudes-type or faudes-function).
1289  *
1290  * @return
1291  * Name
1292  */
1293  const std::string& Name(void) const;
1294 
1295  /**
1296  * Get name of plugin.
1297  * The plugin name defaults to CoreFaudes.
1298  *
1299  * @return
1300  * Name
1301  */
1302  const std::string& PlugIn(void) const;
1303 
1304  /**
1305  * Get corresponding C++ type
1306  *
1307  * @return
1308  * CType, or "" if no such
1309  */
1310  const std::string& CType(void) const;
1311 
1312  /**
1313  * @return
1314  * Short textual documentation.
1315  */
1316  const std::string& TextDoc(void) const;
1317 
1318  /**
1319  * @return
1320  * Filename pointing to the html documentation.
1321  */
1322  const std::string& HtmlDoc(void) const;
1323 
1324  /**
1325  * @return
1326  * CSV-string containing keywords.
1327  */
1328  const std::string& Keywords(void) const;
1329 
1330  /**
1331  * Search comma-seperated keywords for a substring. This should be
1332  * extended to regular expressions in a future release.
1333  *
1334  * @param rPattern
1335  * String-pattern.
1336  *
1337  * @return
1338  * Matching keyword or "" if no match
1339  */
1340  std::string MatchKeyword(const std::string& rPattern) const;
1341 
1342  /**
1343  * Not implemented
1344  * @return
1345  * Number of keywords.
1346  */
1347  int KeywordsSize(void) const;
1348 
1349  /**
1350  * @param pos
1351  * Position of keyword
1352  * @return
1353  * Keyword at specified position (or "" if pos out of range)
1354  */
1355  std::string KeywordAt(int pos) const;
1356 
1357  /**
1358  * Get auto-register flag.
1359  *
1360  * This flag indicated that the respective type was (will be)
1361  * registered by a libFAUDES static initialisation protorype.
1362  *
1363  * @return
1364  * True <> C++-automatic-registration
1365  */
1366  bool AutoRegistered(void) const;
1367 
1368  /**
1369  * Get application-registered flag.
1370  *
1371  * @return
1372  * True <> registered by application
1373  */
1374  bool ApplicationRegistered(void) const;
1375 
1376  /**
1377  * Merge documentation from token stream.
1378  * An exception is thrown if the current type name differs from the one in the documentation.
1379  *
1380  * @param rTr
1381  * TokenReader to read from.
1382  *
1383  * @exception Exception
1384  * - Type mismatch (id )
1385  * - Token mismatch (id 50, 51, 52)
1386  * - IO Error (id 1)
1387  */
1388  virtual void MergeDocumentation(TokenReader& rTr);
1389 
1390 
1391 
1392  protected:
1393 
1394  /**
1395  * Set name.
1396  *
1397  * @param name
1398  * New name.
1399  */
1400  void Name(const std::string& name);
1401 
1402  /**
1403  * Set name of plugin
1404  *
1405  * @param plugin
1406  * New name.
1407  */
1408  void PlugIn(const std::string& plugin);
1409 
1410  /**
1411  * Set C++ type
1412  *
1413  * @param name
1414  * New ctype.
1415  */
1416  void CType(const std::string& name);
1417 
1418  /**
1419  * Set a short textual documentation.
1420  *
1421  * @param textdoc
1422  * New textual documentation.
1423  */
1424  void TextDoc(const std::string& textdoc);
1425 
1426  /**
1427  * Set auto-register flag.
1428  *
1429  * See also AutoRegistered(void)
1430  *
1431  * @param flag
1432  * Flag value.
1433  */
1434  void AutoRegistered(bool flag);
1435 
1436  /**
1437  * Set application-registered flag.
1438  *
1439  * See also AutoRegistered(void)
1440  *
1441  * @param flag
1442  * Flag value.
1443  */
1444  void ApplicationRegistered(bool flag);
1445 
1446  /**
1447  * Set name of file pointing to the html documentation.
1448  *
1449  * @param fname
1450  * Filename
1451  */
1452  void HtmlDoc(const std::string& fname);
1453 
1454  /**
1455  * Append keyword.
1456  *
1457  * @param rKeyword
1458  * Keyword
1459  */
1460  void AddKeyword(const std::string& rKeyword);
1461 
1462  /**
1463  * Std faudes type interface: assignment.
1464  *
1465  * @param rSrc
1466  * Source to copy from
1467  */
1468  void DoAssign(const Documentation& rSrc);
1469 
1470  /**
1471  * Std faudes type interface: test equality
1472  *
1473  * @param rOther
1474  * Other object to compare with.
1475  * @return
1476  * True on match.
1477  */
1478  bool DoEqual(const Documentation& rOther) const;
1479 
1480  /**
1481  * Read configuration data of this object from TokenReader.
1482  *
1483  * This virtual function reads documentation from a token stream.
1484  * The section defaults to Documentation. It invokes DoReadCore to
1485  * do the member data token reading.
1486  *
1487  * @param rTr
1488  * TokenReader to read from
1489  * @param rLabel
1490  * Section to read
1491  * @param pContext
1492  * Read context to provide contextual information (ignored)
1493  *
1494  * @exception Exception
1495  * - Token mismatch (id 50, 51, 52)
1496  * - IO Error (id 1)
1497  */
1498  virtual void DoRead(TokenReader& rTr, const std::string& rLabel = "", const Type* pContext=0);
1499 
1500  /**
1501  * Read configuration data of this object from TokenReader.
1502  *
1503  * This virtual function reads documentation member data only.
1504  * It does NOT read the enclosing begin and end tokens.
1505  *
1506  * @param rTr
1507  * TokenReader to read from
1508  *
1509  * @exception Exception
1510  * - Token mismatch (id 50, 51, 52)
1511  * - IO Error (id 1)
1512  */
1513  virtual void DoReadCore(TokenReader& rTr);
1514 
1515 
1516 
1517  /**
1518  * Write configuration data of this object to TokenWriter.
1519  *
1520  * This virtual function writes documentation to a token stream.
1521  * The section defaults to Documentation. It invokes DoWriteCore to
1522  * do the actual member data writing.
1523  *
1524  * @param rTw
1525  * Reference to TokenWriter
1526  * @param rLabel
1527  * Label of section to write
1528  * @param pContext
1529  * Write context to provide contextual information
1530  *
1531  * @exception Exception
1532  * - IO errors (id 2)
1533  */
1534  virtual void DoWrite(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
1535 
1536 
1537  /**
1538  * Write configuration data of this object to TokenWriter.
1539  *
1540  * This virtual function reads documentation members only.
1541  * It does NOT write enclosing begin and end tokens.
1542  *
1543  * @param rTw
1544  * Reference to TokenWriter
1545  *
1546  * @exception Exception
1547  * - IO errors (id 2)
1548  */
1549  virtual void DoWriteCore(TokenWriter& rTw) const;
1550 
1551 
1552  /** Faudes name. */
1553  std::string mName;
1554 
1555  /** Faudes plugin. */
1556  std::string mPlugIn;
1557 
1558  /** Corresponing C++ type, or "" if no such. */
1559  std::string mCType;
1560 
1561  /** String containing the text-documentation. */
1562  std::string mTextDoc;
1563 
1564  /** String containing the filename of the corresponding html-documentation. */
1565  std::string mHtmlDoc;
1566 
1567  /** Comma-seperated string containing all keywords. */
1568  std::string mKeywords;
1569 
1570  /** Constant characted used to seperate keywords */
1571  static const char mDelim = ';';
1572 
1573  /** Flag to indicate automated registration */
1575 
1576  /** Flag to indicate application registration */
1578 
1579 }; // Documentation
1580 
1581 
1582 
1583 /**
1584  * A TypeDefinition defines a faudes-type in that it specifies
1585  * a faudes-type name to identify the type and a method
1586  * NewObject() to instantiate objects of the respective type.
1587  * In this sense, TypeDefinition is a so called factory class.
1588  * Technically, the TypeDefinition holds one instance of the faude type,
1589  * the so called prototype object, and NewObject() invokes the New() method
1590  * of the prototype. Notebly, there is only one class TypeDefinition that by
1591  * parametrisation defins all derivates of Type.
1592  *
1593  * TypeDefinition is derived from faudes::Documentation and therefore additional
1594  * documentation-data can be associated.
1595  *
1596  *
1597  * @ingroup RunTimeInterface
1598  */
1599 
1601 
1602  // std faudes type interface
1604 
1605  // regisry is friend to set protected values
1606  friend class TypeRegistry;
1607 
1608  public:
1609 
1610  using Documentation::operator=;
1611  using Documentation::operator==;
1612  using Documentation::operator!=;
1613 
1614  /**
1615  * Constructor
1616  *
1617  * The default constructor instantiates an invalid type definition
1618  * without prototype. To construct
1619  * a valid type definition, use the static Constructor() template
1620  * function.
1621  */
1622  TypeDefinition(const std::string& name="") : Documentation(), mpType(NULL) {Name(name);};
1623 
1624  /**
1625  * Destructor.
1626  *
1627  * Delete prototype object.
1628  */
1629  virtual ~TypeDefinition(void){ Prototype(NULL); };
1630 
1631  /**
1632  * Construct empty TypeDefinition object.
1633  * The given template parameter denotes any libFAUDES class derived from faudes::Type
1634  * A new instance of this class is assigned to member variable (pType)
1635  * whereas the name is set as specified.
1636  *
1637  * @tparam T
1638  * Actual c class, derived from Type
1639  * @param rTypeName
1640  * Name to identify this faudes-type<; defaults to the plattform
1641  * dependand typeid from the c++ runtime type information system.
1642  * @return
1643  * Newly constructed type definition.
1644  *
1645  */
1646  template<class T>
1647  static TypeDefinition* Constructor(const std::string& rTypeName="");
1648 
1649  /**
1650  * Construct empty TypeDefinition object.
1651  * The given prototype is assigned to the member variable pType,
1652  *
1653  * @param pProto
1654  * Prototype, derived from Type
1655  * @param rTypeName
1656  * Name to identify this faudes-type<; defaults to the plattform
1657  * dependand typeid from the c++ runtime type information system.
1658  * @return
1659  * Newly constructed type definition.
1660  *
1661  */
1662  static TypeDefinition* Constructor(Type* pProto, const std::string& rTypeName="");
1663 
1664  /**
1665  * Construct TypeDefinition object and read name and
1666  * documentation-data from TokenReader.
1667  *
1668  * @tparam T
1669  * Actual c class, derived from Type
1670  * @param rFileName
1671  * Name of file to read.
1672  * @return
1673  * Newly constructed type definition.
1674  *
1675  * @exception Exception
1676  * - Token mismatch (id 50, 51, 52)
1677  * - IO Error (id 1)
1678  */
1679  template<class T>
1680  static TypeDefinition* FromFile(const std::string& rFileName);
1681 
1682 
1683  /**
1684  * Return pointer to faudes-object prototype
1685  *
1686  * Note: this method is meant for inspection only, control over
1687  * the prototype remains with the TypeDefinition. Use
1688  * NewObject() to instantiate a new faudes-object.
1689  *
1690  * @return
1691  * Reference to prototype object
1692  */
1693  const Type* Prototype(void) const;
1694 
1695 
1696  /**
1697  * Construct faudes-object on heap.
1698  * Return pointer to new instance of assigned Type class.
1699  *
1700  * Note: If no prototype is installed, NULL is returned.
1701  *
1702  * @return
1703  * Pointer to new Type instance.
1704  */
1705  Type* NewObject(void) const;
1706 
1707 
1708  /**
1709  * Parameter access: Element Tag
1710  *
1711  * This parameter is used for IO of sets and vectors. It determines
1712  * the tag to used for individual elments.
1713  *
1714  * @return
1715  * Tag parameter.
1716  */
1717  const std::string& ElementTag(void) const;
1718 
1719  /**
1720  * Parameter access: Element Tag
1721  *
1722  * @param rTag
1723  * New tag parameter
1724  */
1725  void ElementTag(const std::string& rTag);
1726 
1727  /**
1728  * Parameter access: Element Tag
1729  *
1730  * This parameter is used for IO of sets and vectors. It determines
1731  * the type to used for individual elments.
1732  *
1733  * @return
1734  * Tag parameter.
1735  */
1736  const std::string& ElementType(void) const;
1737 
1738  /**
1739  * Parameter access: Element Tag
1740  *
1741  * @param rTag
1742  * New tag parameter
1743  */
1744  void ElementType(const std::string& rEype);
1745 
1746 protected:
1747 
1748 
1749  /**
1750  * Std faudes type interface: assignment.
1751  *
1752  * @param rSrc
1753  * Source to copy from
1754  */
1755  void DoAssign(const TypeDefinition& rSrc);
1756 
1757  /**
1758  * Std faudes type interface: test equality
1759  *
1760  * @param rOther
1761  * Other object to compare with.
1762  * @return
1763  * True on match.
1764  */
1765  bool DoEqual(const TypeDefinition& rOther) const;
1766 
1767  /** Disable copy constructor */
1768  TypeDefinition(const TypeDefinition& rOther) : Documentation(rOther) {}; // todo: implement ?? for stl maps ?
1769 
1770  /**
1771  * Clear documentation-data; do *NOT* delete prototype (this is for using Read to
1772  * merge/overwrite documentation)
1773  */
1774  void Clear(void);
1775 
1776  /**
1777  * Use given object as prototype.
1778  *
1779  * The TypeDefinition takes ownership of the
1780  * provided object.
1781  *
1782  * @param pType
1783  * Any class that inherits Type.
1784  */
1785  virtual void Prototype(Type* pType);
1786 
1787  /**
1788  * Read configuration data of this object from TokenReader.
1789  *
1790  * The section defaults to "TypeDefinition", context ignored.
1791  * Actual reading is done by DoReadCore.
1792  *
1793  * @param rTr
1794  * TokenReader to read from
1795  * @param rLabel
1796  * Section to read
1797  * @param pContext
1798  * Read context to provide contextual information (ignored)
1799  *
1800  * @exception Exception
1801  * - Token mismatch (id 50, 51, 52)
1802  * - IO error (id 1)
1803  */
1804  virtual void DoRead(TokenReader& rTr, const std::string& rLabel = "", const Type* pContext=0);
1805 
1806  /**
1807  * Read configuration data of this object from TokenReader.
1808  *
1809  * This method reads members only, it does not read the section.
1810  *
1811  * @param rTr
1812  * TokenReader to read from
1813  *
1814  * @exception Exception
1815  * - Token mismatch (id 50, 51, 52)
1816  * - IO error (id 1)
1817  */
1818  virtual void DoReadCore(TokenReader& rTr);
1819 
1820  /**
1821  * Write configuration data of this object to TokenWriter.
1822  *
1823  * The section defaults to "TypeDefinition", context ignored.
1824  * Actual writing is done by DoWriteCore.
1825  *
1826  * @param rTw
1827  * Reference to TokenWriter
1828  * @param rLabel
1829  * Label of section to write
1830  * @param pContext
1831  * Write context to provide contextual information
1832  *
1833  * @exception Exception
1834  * - IO errors (id 2)
1835  */
1836  virtual void DoWrite(TokenWriter& rTw, const std::string& rLabel="",const Type* pContext=0) const;
1837 
1838  /**
1839  * Write configuration data of this object to TokenWriter.
1840  *
1841  * This method wrtite plain member data, the section lables are not
1842  * written.
1843  *
1844  * @param rTw
1845  * Reference to TokenWriter
1846  *
1847  * @exception Exception
1848  * - IO errors (id 2)
1849  */
1850  virtual void DoWriteCore(TokenWriter& rTw) const;
1851 
1852  /** Type-pointer tp prototype instance */
1854 
1855  /** Extra documentation/parameter: Element Type */
1856  std::string mElementType;
1857 
1858  /** Extra documentation/parameter: Element Tag */
1859  std::string mElementTag;
1860 
1861 }; //TypeDefinition
1862 
1863 
1864 
1865 
1866 /**********************************************************************************************
1867 ***********************************************************************************************
1868 ***********************************************************************************************
1869 
1870 Implemention of template members functions
1871 
1872 ***********************************************************************************************
1873 ***********************************************************************************************
1874 **********************************************************************************************/
1875 
1876 
1877 // Typedefinition constructor function
1878 template<class T>
1879 TypeDefinition* TypeDefinition::Constructor(const std::string& rTypeName){
1880  FD_DRTI("TypeDefinition::Construct<" << typeid(T).name() << ">(" << rTypeName << ")");
1881  TypeDefinition* ftd=Constructor(new T, rTypeName);
1882  /*
1883  cproto= *(ftd->Prototype());
1884  FD_WARN("TypeDefinition::Construct<>: fprototype " << typeid(cproto).name());
1885  */
1886  return ftd;
1887 }
1888 
1889 
1890 // Type definition constructor function
1891 template<class T>
1892 TypeDefinition* TypeDefinition::FromFile(const std::string& rFileName){
1893  FD_DRTI("TypeDefinition::FromFile<" << typeid(T).name() << ">()");
1894  // construct with fallback name
1895  TypeDefinition* td = Constructor<T>();
1896  // read docu, incl actual name
1897  td->Read(rFileName);
1898  // done
1899  return(td);
1900 }
1901 
1902 
1903 
1904 
1905 
1906 } // namespace
1907 
1908 #endif /* FAUDES_RTITYPES_H */
#define FD_DRTI(message)
#define FAUDES_API
Definition: cfl_platform.h:85
Class Token.
Class TokenReader.
Class TokenWriter.
#define FAUDES_TYPE_DECLARATION(ftype, ctype, cbase)
Definition: cfl_types.h:879
void DoAssign(const AttrType &rSrc)
Definition: cfl_types.h:1094
virtual bool IsDefault(void) const
Definition: cfl_types.h:1075
bool DoEqual(const AttrType &rOther) const
Definition: cfl_types.h:1097
static const Type * ConstPointer(const T *ptr)
Definition: cfl_types.h:1027
static Type * Pointer(T *ptr)
Definition: cfl_types.h:1026
static const Type * ConstPointer(const T *ptr)
Definition: cfl_types.h:1021
static Type * Pointer(T *ptr)
Definition: cfl_types.h:1020
std::string mTextDoc
Definition: cfl_types.h:1562
std::string mKeywords
Definition: cfl_types.h:1568
virtual ~Documentation(void)
Definition: cfl_types.h:1280
std::string mCType
Definition: cfl_types.h:1559
std::string mHtmlDoc
Definition: cfl_types.h:1565
std::string mPlugIn
Definition: cfl_types.h:1556
std::string mElementTagDef
Definition: cfl_types.h:1228
std::string mObjectName
Definition: cfl_types.h:1231
std::string mElementType
Definition: cfl_types.h:1225
std::string mElementTag
Definition: cfl_types.h:1220
std::string mFaudesTypeName
Definition: cfl_types.h:1217
const TypeDefinition * pTypeDefinition
Definition: cfl_types.h:1214
std::string mElementTag
Definition: cfl_types.h:1859
virtual ~TypeDefinition(void)
Definition: cfl_types.h:1629
static TypeDefinition * FromFile(const std::string &rFileName)
Definition: cfl_types.h:1892
TypeDefinition(const TypeDefinition &rOther)
Definition: cfl_types.h:1768
std::string mElementType
Definition: cfl_types.h:1856
static TypeDefinition * Constructor(const std::string &rTypeName="")
Definition: cfl_types.h:1879
void Read(const std::string &rFileName, const std::string &rLabel="", const Type *pContext=0)
Definition: cfl_types.cpp:267
static std::string msStringEmpty
Definition: cfl_types.h:872
static std::string msStringVoid
Definition: cfl_types.h:871

libFAUDES 2.33l --- 2025.09.16 --- c++ api documentaion by doxygen