
Discrete Event Dynamic Systems
https://doi.org/10.1007/s10626-024-00394-2

Compositional non-blockingness verification of finite
automata with prioritised events

Yiheng Tang1 · Thomas Moor1

Received: 2 March 2023 / Accepted: 5 January 2024
© The Author(s) 2024

Abstract
This paper addresses the verification of non-blockingness formodular discrete-event systems,
i.e., discrete-event systems that are composed from component models. For such systems,
the explicit construction of a monolithic representation turns out intractable for relevant
applications, since such a construction in general is of exponential cost w.r.t. the number
of components. One well established approach to circumvent the need for a monolithic
representation for the verification task at hand is to alternate (a) the substitution of individual
components by abstractions and (b) the composition of only a small number of strategically
chosen components at a time. When successful, one ends up with a single moderately sized
automaton which does not represent the overall behaviour in any detail but which does block
if and only if the original modular system fails to be non-conflicting. This approach is referred
to as compositional verification and originates from the field of process algebra with more
recent adaptations to finite automata models. The main contribution of the present study
is the development of a number of abstraction rules valid for compositional verification of
non-conflictingness in the presence of global event priorities, i.e., where high priority events
from one component possibly preempt events with lower priority of all components.

Keywords Discrete-event systems · Compositional verification · Event priorities ·
Modular systems

1 Introduction

Considering discrete-event systems that are representable as finite automata, a well studied
liveness property is non-blockingness, i.e., the ability of the system to attain an accepted con-
figuration from any reachable state. For example, in the context of supervisory control theory
(Ramadge and Wonham 1987), where marked states are used to represent task-completion,
non-blockingness is a desired closed-loop property.

B Yiheng Tang
tang.yiheng.hszg@gmail.com

1 Chair of Automatic Control, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 7, Erlangen
91058, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-024-00394-2&domain=pdf
http://orcid.org/0009-0003-0396-2619

Discrete Event Dynamic Systems

For amoderately sized single automaton, non-blockingness can be verified by a straightfor-
ward enumeration-based reachability analysis. In principle, this approach is also applicable
to modular systems consisting of a number of component models since the overall behaviour
can again be represented as a single automaton. The construction of such a monolithic rep-
resentation for the purpose of verification, however, does not scale well with the number of
components, and, for relevant applications tends to turn out infeasible. The situation for off-
line analysis contrasts that for implementing the overall behaviour by computer software and
hardware, e.g. by a programmable logic controller (PLC) in an industrial automation context:
the latter does not require a monolithic representation; see e.g. Moor (2022). This motivates
the interest in methods for the verification of non-blockingness for modular discrete-event
systems that likewise circumvent an explicit monolithic representation.

One well established approach to address this situation is referred to as compositional
verification. Inspired by the testing theory (Nicola and Hennessy 1984), compositional
non-blockingness verification attempts to abstract each component model while preserving
non-blockingness when composed with any arbitrary other test-automaton. This of course
includes the special case of the test-automaton to match the composition of the remain-
ing component models. Such an abstraction is called conflict equivalent. Specifically for
automata representations of component models and their synchronous composition, various
qualifying abstraction rules have been proposed in the literature; see e.g. Flordal and Malik
(2009); Su et al. (2010);Ware andMalik (2012); Pilbrow andMalik (2015); Mohajerani et al.
(2016). Once abstraction rules have been applied to the component models, one strategically
chooses a small number of components and substitutes them with their actual synchronous
composition. While this increases the state count, it also potentially decreases the number
of shared events. In turn, a subsequent substitution via conflict equivalent abstractions is
expected to again decrease the state count. The two forms of substitutions are then alternated
until only one automaton is left. The latter automaton is tested for non-blockingness. By using
only conflict-preserving abstractions, the result carries over to the original modular system.
Clearly, one does not expect to beat computational complexity and the overall procedure
may need to be aborted due to exceeding available computational resources. However, the
literature cited above demonstrates by a number of practical case studies the applicability to
relevant large scale systems with an impressive computational performance.

In the present paper, we consider the situationwhere, besides the synchronous composition
of all automata, the global behaviour of the system is additionally affected by event priorities
(Lúttgen 1998; Cleaveland et al. 2007). In this scenario, each event is associated with an
integer attribute to represent its priority. At any global state, events with higher priority
preempt those with lower priority; i.e., events become disabled whenever events with higher
priority are enabled. In particular, this includes the case where the preempting event is private
to someothermodule.Ourmain technical contribution are a number of abstraction ruleswhich
turn out conflict equivalent and, hence, can be used for compositional verification with event
priorities.

We envisage twomain use cases for our findings. First, consider the verification of a control
algorithm that is implemented by a PLC. A common approach here is to preprocess the PLC
code to obtain a more formal representation. Inspecting the semantics of sequential function
charts (SFCs) as specified in IEC 61131-3, we observe distinguished classes of events with
different priorities to preempt each other, e.g. reading from line levels, execution of activity
code, reconfiguration of tokens, writing to line levels; see also (Blech and Ould Biha 2011)
for formal SFC semantics. For a second use case, consider the scenario where a modular
discrete-event systemhas been synthesised by formalmethods to enforce a language inclusion
specification next to a non-blocking closed loop. Here, wemay after the fact want to introduce

123

Discrete Event Dynamic Systems

priorities to achieve a consistent and repeatable behaviour, which relates to the command
selection problem in Malik (2003). When introducing priorities after synthesis one needs
to verify whether the non-blockingness from the original design is maintaned. This is of
particular interest when implementing a modular supervisor by converting the component
models to executable PLC code using a code generator which explicitly or implicitly assigns
priorities; see e.g.Moor (2022); Fabian andHellgren (1998); Qamsane et al. (2016); Verbakel
et al. (2022).

This paper is an extended version of our earlier conference contribution (Tang and Moor
2022) in that we now (i) include relevant technical lemmata to formally establish our main
results and (ii) generalise the acceptance condition of automata to a multitasking setup, i.e.,
instead of having one set of accepted configurations (Flordal and Malik 2009), we now
consider multiple sets of accepted configurations, all of which required to be reachable from
any reachable state (Hering de Queiroz et al. 2005; Schmidt et al. 2007). The organisation
is as follows. In Section 2, we formally introduce event priorities and derive a suitable
form of synchronous composition by shaping the overall behaviour. This discussion leads
to an adapted notion of conflict equivalence w.r.t. prioritised events. In Section 3, we derive
conflict-preserving abstractions as our main technical contribution. For this, we essentially
adapt the abstraction rules proposed by the literature to account for prioritised events; see
also Flordal and Malik (2009); Su et al. (2010); Ware and Malik (2012); Pilbrow and Malik
(2015). Specifically, we derive a partial variant of the shaping operator which preserves
conflicts; we discuss how to treat silent live-locks; we make use of a prioritised variant of
weak bisimulation Lúttgen (1998) which in turn leads to the redundant silent step rule; and
we propose a prioritised variant of incoming equivalence which in turn leads to the active
event rule, the silent continuation rule, the only silent incoming/outgoing rules and finally
adapt the certain conflicts rule. In Section 4, we evaluate our results by a scalable example
of concatenated conveyor belts.

2 Preliminaries

We introduce some basic notation in order to address discrete-event systems with priori-
tised events. We then discuss synchronous composition for modular systems up to the point
where we are in the position to formally characterise conflict-preserving abstractions. The
identification of such abstractions then becomes the technical problem to be addressed in the
subsequent section.

2.1 Basic notation

Events and strings Consider a universe of symbols A also referred to as events, which are
the basic elements to represent discrete-event dynamics. All events throughout this paper
are considered elements of A. A string s is either a finite sequence of events or the empty
string ε /∈ U. The concatenation of two strings s and t is denoted st , specifically, we have
εs = s = sε for any string s. For two strings s and r , s is considered a prefix of r if there
exists some string t such that st = r ; this is denoted s � r . The Kleene closure of a set of
events A ⊆ U is denoted A∗ and amounts to the set of all strings constructed from events in
A, including the empty string ε. By convention we have ∅∗ = {ε} and wewrite A+ to exclude

123

Discrete Event Dynamic Systems

the empty string; i.e., A+ := A∗ − {ε}. Except that we beforehand declare the universe of all
symbolsA, our notation so far is in line with the textbook (Cassandras and Lafortune 2008).

Priorities We assign a priority to each event from A. This is a means of refining execution
semantics.When confronting a choice of executing one of multiple enabled transition labeled
with events of different priority, preference is given to the highest priority. Technically, we
refer to the priority assignment function

prio : U → N (1)

as a global entity and priorities are read as ordinal numbers, i.e., 1 ∈ N is considered the first
priority, 2 ∈ N the second priority, etc. As a greater ordinal number denotes a lower priority,
1 is the unique highest priority. Thus, when writing e.g. prio(σ) < prio(ρ), we indicate that
the priority of σ is higher than that of ρ. For convenience, the following notations are used
for any event set A ⊆ U:

• events with priority higher (or not lower) than n ∈ N within A
A<n := {α ∈ A |prio(α) < n };
A≤n := {α ∈ A |prio(α) ≤ n };

• events with priority higher (or not lower) than prio(α) for α ∈ U within A
A<α := A<prio(α);
A≤α := A≤prio(α);

• the lowest priority value within A

lo(A) :=
{
max{prio(α) | α ∈ A } if A �= ∅;
1 if A = ∅.

Silent eventsFormodular systems, a dedicated representation of behaviourwhich is internal to
an individual module and, hence, irrelevant for synchronisation with the remaining modules,
is of a particular interest. Technically, we represent such internal behaviour by distinguished
silent events τ ∈ ϒ ⊂ U. The remaining events σ ∈ U − ϒ are considered regular. We use
the terminology alphabet to refer to any finite set � of regular events, i.e., � ⊆ U − ϒ .
Only regular events are shown explicitly to the external environment for the purpose of
synchronisation. Regarding the priority assignment, it suffices to let ϒ be such that each
priority value n ∈ N is bijectively mapped to one event in ϒ . We hence use the symbolic
representation τ(n) for the unique silent event with priority n ∈ N and we then have

ϒ = { τ(n) | n ∈ N }. (2)

Most prominently, our set-up guarantees that each regular event has a unique counterpart
silent event with the same priority. Formally, the hiding map hide : (U−ϒ) → ϒ is defined
by

hide(σ) = τ(prio(σ)) (3)

for each σ ∈ U − ϒ . This construct is also utilised in Lúttgen (1998) and constitutes an
extension of the more common single distinguished silent event ϒ = {τ } when no priorities
are to be considered; see e.g. Milner (1989); Flordal and Malik (2009). In this regard, we
utilise natural projection p : U∗ → (U − ϒ)∗ to remove all silent events from any string
s ∈ U∗ Cassandras and Lafortune (2008). Formally, p is iteratively defined by

p(ε) =ε; (4)

p(sα) =
{
p(s) if s ∈ U∗, α ∈ ϒ;
p(s)α if s ∈ U∗, α ∈ U − ϒ.

(5)

123

Discrete Event Dynamic Systems

2.2 Finite automata

Throughout this paper, we consider discrete-event systems represented by non-deterministic
automata, defined as follows.

Definition 2.2.1 A finite automaton is a tuple G = 〈Q , �,→, Q◦, M〉 where
• Q is the finite state set;
• � is the alphabet;
• → ⊆ Q × (� ∪ ϒ) × Q is the transition relation;
• Q◦ ⊆ Q is the set of initial states;
• M ⊆ 2� is the marking set.

Recall that, by convention, � ⊆ U − ϒ , i.e. the alphabet consists of regular events only.

Our definition diverges in two aspects when compared e.g. to the textbook (Cassandras and
Lafortune 2008). First, we formally declare the alphabet � to consist of regular events only
while the transition relation also accounts for silent events. This is cosmetic and simplifies the
subsequent formal discussion of conflict-preserving abstractions. Second, rather than to have
a set of marked states as an acceptance condition we have a set M of sets of terminal events
	 ⊆ �. In order to discuss the intended semantics of this construct, we need to introduce
adequate notions of reachability and co-reachability. For notational convenience, we write
x

α−→ y for (x, α, y) ∈→ and this infix notation is iteratively extended to string-valued labels;
namely, (i) for all x ∈ Q let x

ε−→ x and (ii) for all x, z ∈ Q, s ∈ A∗ and α ∈ A such that

x
s−→ y and y

α−→ z for some y ∈ Q let x
sα−→ z. Moreover, we write x

s−→ as a short form for
x

s−→ y for some y ∈ Q.

Definition 2.2.2 Given an automaton G = 〈Q , �,→, Q◦, M〉, let A = ϒ ∪ �. A state

x ∈ Q is reachable if there exists s ∈ A∗ such that Q◦ s−→ x . A state x ∈ Q is co-reachable

if for all 	 ∈ M , there exists t ∈ A∗ and ω ∈ 	 such that x
tω−→. The automaton G is

non-blocking if all its reachable states are co-reachable.

Example 1 Consider the automaton G = 〈Q , �,→, Q◦, M〉 given in Fig. 1 with � =
{σ, ρ, ω}. Clearly, both states are reachable. Two alternative marking sets M are dis-
cussed: with M = {{σ, ω}, {ρ, ω}}, then G is non-blocking; on the other hand, with
M = {{σ, ω}, {ρ}}, G turns out blocking since ρ cannot be executed any more once state II
is attained.

The definition of non-blockingness in the current paper is a variation of the so-called
coloured marking proposed in the context of multitasking supervisory control (Hering de

Fig. 1 An example for non-blockingness

123

Discrete Event Dynamic Systems

Queiroz et al. 2005; Schmidt et al. 2007). For each 	 ∈ M , we require the possibility of
executing some ω ∈ 	. Thus, for the case in Example 1, if we have M = {{σ, ω}, {ρ, ω}},
then any state being able to execute ω is clearly co-reachable since ω appears in both event
sets in M . For the special case of M = {{ω}}, where ω ∈ � ⊆ A − ϒ , we have a unique
termination event ω which matches the more common setting used e.g. in Flordal and Malik
(2009). Note that by definition any terminal event in M is required to be regular (non silent).

In support of the subsequent discussion, we introduce some more convenient notation
referring to a given automaton G = 〈Q , �,→, Q◦, M〉.
• Let AG := � ∪ ϒ denote the alphabet of G plus all silent events. The subscript (·)G is
omitted when G is clear from the context.

• We write X
s−→ Y with X , Y ⊆ Q, s ∈ A∗, whenever there exist x ∈ X and y ∈ Y so

that x
s−→ y.

• We write X � s−→ Y with X , Y ⊆ Q, s ∈ A∗, to indicate that (x, s, y) /∈ → for all x ∈ X
and y ∈ Y .

• We use short forms X
s−→ and G

s−→ for X
s−→ Q and Q◦ s−→ Q, respectively.

• A trace is a sequence of alternating states and events, i.e.

x0
α1−→ x1

α2−→ · · · αk−→ xk . (6)

• The abstract transition relation �⇒ ⊆ Q × �∗ × Q is defined for x, y ∈ Q, s ∈ �∗

with x
s�⇒ y if and only if there exists s′ ∈ A∗ such that p(s′) = s and x

s′−→ y.

Regarding reachability, Definition 2.2.2, note that when substituting
(·)−→ by

(·)�⇒ and
when quantifying over strings from �∗ as opposed to A∗, we obtain the same reachable
states. Likewise for co-reachability.

• When concatenating transitions,wemay omit the intermediate state, i.e., wewrite x
s−→ s′�⇒

y if and only if there exists z such that x
s−→ z

s′�⇒ y.
• The set of active events in state x ∈ Q is given by

G(x) := {α ∈ A | x α−→ }. (7)

• The set of active events in state x ∈ Q with priority higher (or not lower) than n ∈ N

are denoted
G<n(x) := {α ∈ G(x) |prio(α) < n};
G≤n(x) := {α ∈ G(x) |prio(α) ≤ n}.

• The silent active events in state x ∈ Q (with priority higher or not lower than n ∈ N)
are denoted
Gslnt(x) := G(x) ∩ ϒ ;
G<n

slnt(x) := G<n(x) ∩ ϒ ;
G≤n

slnt(x) := G≤n(x) ∩ ϒ ;
• The regular active events in state x ∈ Q (with priority higher or not lower than n ∈ N)
are denoted
Grglr(x) := G(x) − ϒ ;
G<n

rglr(x) := G<n(x) − ϒ ;

G≤n
rglr(x) := G≤n(x) − ϒ ;

To formally address the effect of event priorities to the behaviour associated with an
automaton, we introduce the following shaping operator. Effectively, it removes all transi-

123

Discrete Event Dynamic Systems

tions that will be preempted by a transition labeled with a higher-priority event. Although this
appears a trivial exercise for a single automaton, it becomes more involved when considering
modular systems.

Definition 2.2.3 Given an automaton G = 〈Q , �,→, Q◦, M〉, the shaping operator S(·) is
defined as such that S(G) := 〈Q, �,→S , Q◦, M〉 where

x
α−→S y if and only if x

α−→ y and G<α(x) = ∅. (8)

Throughout this paper, we concisely write (·)<α with α ∈ U as an abreviation for (·)<prio(α).

Note that after shaping an automaton, some states may become unreachable and that such
can be removed.1 Specifically, a blocking automaton can become non-blocking after shaping
and vice-versa.

Example 2 Consider again the automatonG = 〈Q , �,→, Q◦, M〉 given in Fig. 1 and recall
that G is blocking for the marking M = {{σ, ω}, {ρ}}. If either ρ or σ are assigned a higher
priority than ω, i.e. if prio(ρ) < prio(ω) or prio(σ) < prio(ω), then state II becomes
unreachable and, hence, S(G) turns out non-blocking.

2.3 Synchronous composition and non-conflictingness

Turning to modular systems consisting of multiple modules each represented by an automa-
ton, the overall behaviour is commonly defined by the synchronisation of shared events. I.e.,
any individual module at any time can only take a transition labeled with an event shared
with some other modules if all modules that share this event take a respective transition
simultaneously. The below definition for the synchronous composition of two modules is a
variation of Cassandras and Lafortune (2008) that takes into account our specific setting with
distinguished silent events ϒ , which on purpose and in contrast to regular events are not
subject to synchronisation; see also Milner (1989).

Definition 2.3.1 Given two automata Gi = 〈Qi , �i ,→i , Q◦
i , Mi 〉, i ∈ {1, 2}, their syn-

chronous composition is defined by G1 ‖ G2 := G := 〈Q , �,→, Q◦, M〉 where
Q := Q1 × Q2, � := �1 ∪�2, → ⊆ Q × (� ∪ϒ)× Q, Q◦ := Q◦

1 × Q◦
2, M := M1 ∪ M2,

with (x1, x2)
α−→ (y1, y2) if and only if either of the below conditions hold:

α ∈ �1 ∩ �2, x1
α−→1 y1 and x2

α−→2 y2; or (9)

α ∈ (�1 − �2) ∪ ϒ, x1
α−→1 y1 and y2 = x2; or (10)

α ∈ (�2 − �1) ∪ ϒ, y1 = x1; and x2
α−→2 y2. (11)

A transition (x1, x2)
α−→ (y1, y2) is driven by G1 if x1

α−→1 y1; likewise, it is driven by G2 if
x2

α−→2 y2. The events �1 ∩ �2 are referred to as shared events, all other events are private
events.

Up to trivial renaming of states, the synchronous composition is associative and com-
mutative; see Milner (1989). Given a modular system consisting of k modules represented
by the automata G1, . . . ,Gk , for the purpose of the present paper the overall behaviour is
given by S(G1 ‖ · · · ‖ Gk); i.e., event preemption by prioritisation is meant to have a global

1 Throughout this paper, we will always assume that unreachable states are removed after shaping.

123

Discrete Event Dynamic Systems

effect on the overall behaviour. Specifically, the shaping operator S does not distribute over
synchronous compositions. The terminology of a modular system to be non-conflicting is
then introduced as a synonym for the associated overall behaviour to be non-nonblocking.

Definition 2.3.2 A family (Gi)1≤i≤k of automata is non-conflicting w.r.t. prioritised events
if and only if S(G1 ‖ G2 ‖ · · · ‖ Gk) is non-blocking.

Non-conflictingness of a modular system neither implies nor is implied by non-
blockingness of each individual module. Thus, the conventional way to check non-
conflictingness is to explicitly construct a monolithic representation and then to test for
non-blockingness. This approach greatly suffers from the fact that the overall state count
grows exponentially with the number of modules. This problem can be decently addressed
by compositional verification, in which we seek for abstractions of individual modules such
that non-conflictingness is preserved. Given a modular system

S(G1︸︷︷︸
:=G

‖ G2 ‖ · · · ‖ Gk︸ ︷︷ ︸
:=H

) , (12)

let’s choose G := G1 as the automaton we are about to abstract, and denote H the remain-
ing part consisting of the synchronous composition of all modules except for G. Since
synchronous composition is commutative and associative, our choice of G := G1 is not
restrictive and we can repeat the subsequent argument for the abstraction of any other mod-
ule. An abstraction G ′ of G qualifies for our purposes if

S(G ′ ‖ H) is non-blocking ⇐⇒ S(G ‖ H) is non-blocking. (13)

An elementary abstraction that suits our needs is referred to as hiding, and technically
amounts to relabelling transitions with specific regular events by their silent counterpart of
the same priority.

Definition 2.3.3 Let G = 〈Q , �,→, Q◦, M〉 be an automaton. Hiding � ⊆ � in G results

in an automaton G/� = 〈Q, �,→�, Q◦, M〉 where x
α−→� y if and only if either of the

following conditions is satisfied:

α ∈ (� − �) ∪ ϒ and x
σ−→ y ; (14)

α ∈ ϒ and ∃ σ ∈ � . x
σ−→ y ∧ prio(σ) = prio(α) . (15)

When synchronising an automaton G with the remaining part H , we can hide all private
events inG which are not utilised in the marking set while preserving any conflicts. Formally,
we make the following observation.

Observation 2.3.4 LetG = 〈QG , �G ,→G , Q◦
G , MG〉and H = 〈QH , �H ,→H , Q◦

H , MH 〉
be two automata. Let � ⊆ �G − �H be such that for all 	G ∈ MG, � ∩ 	G = ∅. Then
G ′ := G/� satisfies Eq. 13.

For practical purposes, a qualifying abstraction scheme only makes sense, if it avoids an
explicit reference to the remaining part H ; i.e., there shall be no need to compute amonolithic
representation of H in order to compute the abstraction G ′. This is indeed true for hiding
as defined above. To this end, the literature proposes the notion of conflict equivalence.
There, non-blockingness is required to be preserved for the composition not only with one
specific remaining part H but with any automaton T , the latter then being referred to as test
automaton; see e.g. Malik et al. (2004). For the situation of prioritised events, one obtains
the following formal definition.

123

Discrete Event Dynamic Systems

Definition 2.3.5 Two automata G ′ and G are conflict equivalent w.r.t. prioritised events,
denoted G ′ �S G, if for any automaton T , it holds that

S(G ′ ‖ T) is non-blocking ⇐⇒ S(G ‖ T) is non-blocking.

Clearly, conflict-equivalence w.r.t. prioritised events implies Eq. 13. Moreover, the above
definition avoids any reference to a specific remaining part H . Since the shaping operator
does not distribute over synchronous composition, abstraction schemes from the literature
that are known to be conflict equivalent may in general fail to also be conflict equivalent w.r.t.
prioritised events. For the remainder of this paper, we use conflict equivalence concisely for
conflict equivalence w.r.t. prioritised events. In particular, an abstractionG ′ ofG is a conflict-
preserving abstraction of G if G ′ �S G.

3 Conflict-preserving abstractions

It has been demonstrated by example that given an automaton there in general is no unique
state minimal conflict-preserving abstraction; see Flordal and Malik (2006) 2. Hence the
interest in a variety of individual rules that yield conflict-preserving abstractions and that
can be utilised in an iterative fashion, e.g., until fixpoint is obtained. As our main technical
contribution, we adapt the known abstraction rules from the literature to account for event
priorities; see also Flordal andMalik (2009); Su et al. (2010);Ware andMalik (2012); Pilbrow
and Malik (2015).

3.1 Partial shaping and quotient automata

When shaping an individual module locally before the overall synchronous composition is
constructed, wemiss out in that a shared high-priority event in onemodulemay be deactivated
by some other module. Specifically, G ′ := S(G) in general fails to be a conflict-preserving
abstraction of G. However, we may restrict the shaping operator to only affect transitions for
which we know by G that they will be preempted by a local silent event.

Definition 3.1.1 Given an automaton G = 〈Q , �,→, Q◦, M〉, the ϒ-shaping operator
Sϒ(·) is defined by Sϒ(G) := 〈Q, �,→Sϒ , Q◦〉 where

x
α−→Sϒ y if and only if x

α−→ y and G<α
slnt(x) = ∅. (16)

An automaton G is said to be ϒ-shaped if G = Sϒ(G).

Technically, for any τ ∈ ϒ and α ∈ A so that x
τ−→ and x

α−→ for some state x with
prio(τ) < prio(α), the latter transition will never be executed once full shaping will even-
tually be applied. This leads to the following observation, which renders G ′ := Sϒ(G) a
conflict-preserving abstraction of G.

Observation 3.1.2 For any two automata G and T , it holds that

S(G ‖ T) = S(Sϒ(G) ‖ T). (17)

2 Allthough the cited literature does not account for event priorities, the case carries through to our setting
here in that we may design the same priority uniformly to all events.

123

Discrete Event Dynamic Systems

Remark 1 If the alphabet �H of the remaining part in H is known, partial shaping can be
applied more aggressively by also accounting for regular events which are private to G. ; i.e.
using G<α(x)∩ (ϒ ∪ (�G −�H)) = ∅ in Eq. 16. We refer to this variant as private shaping
S�(·). Similar to hiding, this yields an abstraction that satisfies Eq. 13 but technically fails
to be conflict-preserving because it refers to �H .

In the absense of event priorities, an enabled silent event in the module G does not affect
the transitions which the remaining part H can possibly take. This contrasts our setting in
which a high-priority event in G, whether silent or not, preempts any event of lower priority
in H . Specifically, if G can indefinitely generate silent events of a certain priority, it may trap
the overall system into a live-lock. Technically, we consider the following situation.

Definition 3.1.3 Given a ϒ-shaped automaton G = 〈Q , �,→, Q◦, M〉, an n-live-lock in G
is a non-empty set of states X ⊆ Q where for all x ∈ X

(L1) x
τ−→ y with τ ∈ ϒ implies that y ∈ X ;

(L2) for all x, y ∈ X there exists a trace x
α1−→ x1

α2−→ x2
α3−→ · · · xk αk−→ y, where xi ∈ X ,

αi ∈ ϒ , for all i = 1, 2, . . . k; and
(L3) lo(∪x ′∈XGslnt(x ′)) = n.

We concisely write α-live-lock to denote prio(α)-live-lock where α ∈ A.

By (L1), X is invariant w.r.t. silent transitions; i.e., once in a state x ∈ X , G can only exit
X by a transition labeled with a regular event. By (L2), each pair of states in X is strongly
connected w.r.t. silent transitions; i.e., when in a state x ∈ X , any state y ∈ X can be reached
by taking only silent transitions. By (L3), in a state x ∈ X , all its active silent events have
at least priority n. Thus, as intended, G may indefinitely trap H by preempting events with
lower priority than n.

Example 3 Let G, G ′ and H be three automata as given in Fig. 2. In particular, {I, II} is a
2-live-lock inG. WhenG and H are synchronised, the only transition in H , which is labelled
by τ(3), can never be executed. On the other hand, {I′, II′} does not form any live-lock in G ′
due to the invalidation of (L1). By reaching III′, the trapping effect is released which allows
H to proceed.

Note that (L1) in conjunctionwith (L2) impliesmaximality in the sense that for two n-live-
locks X andY with X∩Y �= ∅wemust have X = Y . Specifically, the computational detection
of live-locks can be easily accomplished by seeking for Strongly Connected Components
(SCCs) in a suitably preprocessed transition structure; see Aho et al. (1974).

A common technique for the reduction of the state count on an automation is to take the so
called quotient w.r.t. an equivalence relation ∼⊆ Q × Q on the state set Q. This effectively
merges sets of states form one equivalence class into one single state each; see also Flordal
and Malik (2009).

Fig. 2 The trapping effect of a 2-live-lock

123

Discrete Event Dynamic Systems

Definition 3.1.4 Given an G = 〈Q , �,→, Q◦, M〉 and an equivalence relation∼⊆ Q×Q,
denote the equivalence classes [x] := {x ′ ∈ Q | (x, x ′) ∈ ∼}. The quotient automaton G/•∼
of G w.r.t. ∼ is defined by G/•∼ := 〈Q/∼, A,−→•

∼ , Q̃◦, M〉 where Q/∼ := { [x] | x ∈ Q },
Q̃◦ := { [x◦] | x◦ ∈ Q◦ }, and −→•

∼:= { [x] α−→ [y] | x α−→ y }.
Clearly, if one seeks for a conflict-preserving abstraction, one will need to imply further

requirements on∼, and wewill do so in the following section. At this point, wewant to show-
case a potential issue when it comes to n-live-locks. Specifically, when two equivalent states
x ∼ y originally have a silent transition x

τ−→ y, the quotient automaton G/∼ will contain
a self-loop [x] τ−→ [x]. Thus, taking quotients will potentially introduce n-live-locks. This
situation can be conveniently fixed by post-processing the quotient automaton accordingly.

Definition 3.1.5 Given a ϒ-shaped automaton G = 〈Q , �,→, Q◦, M〉 and an equivalence
relation ∼⊆ Q × Q, the shaped quotient automaton G/∼ of G w.r.t. ∼ is defined as the
ordinary quotient automaton G/∼ := 〈Q/∼, A,−→∼ , Q̃◦, M〉 except that we now consider
the transition relation

−→∼:= { [x] α−→ [y] | x α−→ y }
− { [x] τ−→ [x] | τ ∈ ϒ and there exists no τ -live-lock X ⊆ [x] in G }.

(18)

Example 4 Consider the automaton G given in Fig. 3. The state set {I, II} is a 2-live-lock and
merging it should result in a τ(2)-self-loop in order to preserve situations, in which G traps
some test automaton T . By the ordinary quotient automaton G/•∼, we would additionally
obtain a τ(1)-self-loop.Namely,G/•∼will trap certain test cases,which the original automaton
G would not trap. This is undesired. Likewise, the state set {III, IV} is not a live-lock, and
merging those two states shall not result in a silent self loop. In contrary, the trapping power
of the original automaton is preserved in its shaped quotient automaton G/∼.

In the remainder of this article, since we are only interested in the shaped quotient of an
automaton, we will consistently utilise notations G/∼ and −→∼ to denote G/∼ and −→∼ ,
respectively. In addition, we concisely utilise the terminology quotient for shaped quotient.
We now consider several useful properties of quotient automata.

Lemma 3.1.6 Given a ϒ-shaped automaton G = 〈Q , �,→, Q◦, M〉 and an equivalence
relation ∼⊆ Q × Q, denote the shaped quotient G/∼ := 〈Q/∼, A,−→∼ , Q̃◦, M〉. Then
(i) for any transition [x] α−→∼ [y], there exist x ′ ∈ [x] and y′ ∈ [y] so that x ′ α−→ y′; and
(ii) if G/∼<n

slnt([x]) = ∅ for some x ∈ Q and n ∈ N, then there exists x ′ ∈ [x] so that
G<n

slnt(x
′) = ∅.

Fig. 3 Shaped quotient automaton

123

Discrete Event Dynamic Systems

Proof Claim (i) is an immediate consequence of −→∼⊆ { [x] α−→ [y] | x α−→ y }. Regarding
(ii), consider x ∈ Q with G/∼<n

slnt([x]) = ∅. Specifically, we have by Eq. 18 that x ′ τ−→ y′
with x ′ ∈ [x] and τ ∈ ϒ<n implies y′ ∈ [x]. For a proof by contradiction, assume that
G<n

slnt(x
′) �= ∅ for all x ′ ∈ [x]. Then, for each x ′ ∈ [x], there exists a transition x ′ τ−→ y′

with y′ ∈ [x] and τ ∈ ϒ<n . This implies the existence of a silent SCC within [x] with
priorities all above n, i.e., a subset X ⊆ [x] which qualifies for an m-live-lock, m < n.

By Eq. 18, [x] τ(m)−−→ [x] is not removed from →∼, and this establishes a contradiction to
G/∼<n

slnt([x]) = ∅ ��
Conventions Various statements and their proofs in the remainder of this chapter involve an
automaton G to be abstracted and an arbitrary test-automaton T . In such cases, we take the
following conventions for brevity:

• Given G and an equivalence relation ∼⊆ Q × Q, we always denote by G/∼ the shaped
quotient given in Definition 3.1.5.

• States in G are always indicated with a subscript (·)G , e.g. xG , x ′
G , yG , . . . , while states

in T are always indicated with a subscript (·)T .
• Subscripts (·)G and (·)T are omitted for transitions in G and T since they can be read
from the states of the transition, e.g. xG

α−→ yG must be a transition in G.
• Since T is arbitrary and its marking set can also contain private regular events, we may
aggressively assume that none of the transitions in T is silent. In addition, the notation
of �T \G := �T − �G denotes the private event set of T where �G and �T are the
alphabets of G and T , respectively. Notations

Tprvt(xT) := { τ ∈ �T \G | xT τ−→ };
T<n
prvt(xT) := { τ ∈ Tprvt(xT) |prio(τ) < n }

are utilised to denote active private events (with priority higher than n) in state xT ,
respectively. Furthermore, a trace is considered asynchronous if all event labels within
this trace are from ϒ ∪ �T \G .

3.2 Prioritised weak bisimulation

In the absence of event priorities, taking quotient automata w.r.t. weak bisimulations (also
known as observation equivalences) is a well studied method of abstraction. Historically,
the concept originates from process algebra, where we specifically refer to the Calculus of
Communicating Systems (CCS) (Milner 1989). It has been shown by Malik et al. (2004)
that weak bisimulations yield conflict quivalent abstractions. To account for event priorities,
we mimic the same line of thought, however, now referring to the variant process algebra
CCSch (Lúttgen 1998). The latter refers to operational semantics with event priorities and
proposes the notion of prioritised weak bisimulation (PWB). Our conjecture here is that
quotient automata w.r.t. PWB are conflict equivalent w.r.t. prioritised events. In this section,
we provide a self-contained proof of this conjecture. As in Lúttgen (1998), we distinguish
three classes of transitions.

Definition 3.2.1 Given aϒ-shaped automatonG = 〈Q , �,→, Q◦, M〉, define the following
extended transition relations:

(T1) −−→
�:n ⊆ Q × A × Q: x

α−−→
�:n y if x

α−→ y and G<n
rglr(x) ⊆ �;

123

Discrete Event Dynamic Systems

(T2) ��⇒
�:n ⊆ Q×{ε}× Q: x

ε��⇒
�:n y if x

τ1−−→
�:n

τ2−−→
�:n · · · τk−−→

�:n y, k ≥ 0 and τ1 · · · τk ∈ (ϒ≤n)∗;

(T3) �⇒
n

⊆ Q × {ε} × Q: x
ε�⇒
n

y if x
τ1−→ τ2−→ · · · τk−→ y, k ≥ 0 and τ1 · · · τk ∈ (ϒ≤n)∗.

For brevity, we use −−→
�:α , ��⇒

�:α and �⇒
α

with α ∈ A to refer to −−−−−→
�:prio(α)

, �����⇒
�:prio(α)

and

����⇒
prio(α)

, respectively.

Transition relations (T1) and (T2) are in general harder to preempt – when being syn-
chronised with another automaton, we wish that preemption caused by shared high-priority
events shall not take place before the target state is reached. Thus, in (T1) and (T2), the set
of active regular high-priority events is restricted in respective states. Also note that x

ε��⇒
�:n y

implies x
ε�⇒
n

y for any � ⊆ U. Furthermore, although (T1) in general can not be extended to

string-valued labels, we still stipulate that x
ε−−→

�:n x , x
ε��⇒

�:n x and x
ε�⇒
n

x hold for any state

x , any event set � and any priority value n. It is worth mentioning that in these cases, there
is in fact no restriction on the active event set in x . In addition, by writing ��⇒

�:1 , we intend
to describe a sequence of τ(1) events. The execution of such a sequence cannot be disturbed
through preemption.

We are now in the position to formally define prioritised weak bisimulation (PWB).

Definition 3.2.2 Let G = 〈Q , �,→, Q◦, M〉 be an ϒ-shaped automaton. A symmetric
relation ≈⊆ Q × Q is a prioritised weak bisimulation on G (PWB) if for any x, x ′ ∈ Q so
that x ≈ x ′, the following hold:

(P1) If G<n
slnt(x) = ∅ for some n ≥ 0, then there exists y′ so that x ≈ y′, G<n

slnt(y
′) = ∅,

G<n
rglr(y

′) ⊆ � and x ′ ε��⇒
�:n y′ where � = G<n

rglr(x);

(P2) If x
α−→ y, then there exists y′ so that y ≈ y′ and x ′ ε��⇒

�:α
p(α)−−→
�:α

ε��⇒
�:1 y′ where � =

G<α
rglr(x).

In support of proving our conjecture, we make the following technical observation.

Proposition 3.2.3 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 an ϒ-shaped automaton with a

PWB ≈ ⊆ QG × QG on G. The following two statements hold for any automaton
T = 〈QT , �T ,→T , Q◦

T , MT 〉, any xG , yG ∈ QG, any α ∈ A and any xT , yT ∈ QT :

(C1) if ([xG], xT)
α−→S ([yG], yT) in S(G/≈ ‖ T), then for all x ′

G ∈ [xG], there exists some
y′
G ∈ [yG] so that (xG , xT)

p(α)��⇒S (yG , yT) in S(G ‖ T).

(C2) if (xG , xT)
α−→S (yG , yT) in S(G ‖ T), then ([xG], xT)

p(α)−−→S ([yG], yT) in S(G/≈ ‖
T).

Proof (C1): There are two cases:

(Case 1) If ([xG], xT)
α−→S ([yG], yT) is driven by G/≈, then from (P2), for all x ′

G ∈ [xG],
there exists some x̄G ∈ QG , ȳG ∈ QG and y′

G ∈ [yG] so that x ′
G

ε��⇒
�:α x̄G

p(α)−−→
�:α

ȳG
ε��⇒

�:1 y′
G where � = G<α

rglr(xG). Note that � ⊆ G/≈<α
rglr([xG]). This enables a

sequence of transitions (x ′
G , xT)

ε��⇒
�:α

S (x̄G , xT)
p(α)−−→
�:α

S (ȳG , yT)
ε��⇒

�:1
S (y′

G , yT)

in S(G ‖ T).

123

Discrete Event Dynamic Systems

(Case 2) Otherwise, ([xG], xT)
α−→S ([yG], yT) is not driven by G/≈. This implies that

[xG] = [yG], α ∈ ϒ and G/≈<α
slnt([xG]) = ∅. Then from (P1), for all x ′

G ∈
[xG], there exists y′

G ∈ [yG] = [xG] so that G<α
slnt(y

′
G) = ∅, G<α

rglr(y
′
G) ⊆ �

and x ′
G

ε��⇒
�:α y′

G where � = G<α
rglr(xG). This enables a sequence of transitions

(x ′
G , xT)

ε�⇒S (y′
G , xT)

α−→S (y′
G , yT) in S(G ‖ T)

(C2): There are two cases:

(Case 1) Let (xG , xT)
α−→S (yG , yT)be driven byG. In this case, if xG ≈ yG andα ∈ ϒ , then

we have a transition (xG , xT)
ε−→S (yG , yT) = (xG , xT) in S(G ‖ T). Otherwise,

suppose ([xG], xT) �α−→S ([yG], yT) in S(G ‖ T) and we prove by contradiction.

In this case, there must exist some α′ ∈ A so that ([xG], xT)
α′−→S in S(G/≈ ‖ T)

and prio(α′) < prio(α). Clearly, ([xG], xT)
α′−→S cannot be driven by T from

(xG , xT)
α−→S (yG , yT). There are two further sub-cases:

(i) α′ ∈ ϒ . Note that in this case, α′ cannot appear as a self-loop over [xG] inG/≈. If so,
then [xG] contains some α′-live-lock in G. Note that G<α

slnt(xG) = ∅ must hold from
the ϒ-shapedness. Then from (P1), [xG] cannot contain such α′-live-locks. Thus,
there exists some x ′

G ∈ [xG] and zG ∈ QG − [xG] so that x ′
G

α′−→ zG . From (P2),
it implies the existence of some τ ∈ Gslnt(xG) so that prio(τ) ≤ prio(α′), which
contradicts (xG , xT)

α−→S (yG , yT).
(ii) If α′ ∈ �, then similar to (i), either α′ ∈ G(xG) or some τ ∈ G≤α′

(xG). Both
contradict (xG , xT)

α−→S (yG , yT).

(Case 2) Otherwise, (xG , xT)
α−→S (yG , yT) is not driven by G. This case can be reasoned

from (i) and (ii) as in Case 1 of C2 directly. ��
By performing a simple induction on the result of the above proposition, we establish that

quotients w.r.t. PWS are indeed conflict equivalent w.r.t. prioritised events.

Theorem 3.2.4 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be an ϒ-shaped automata with an PWB

≈ ⊆ Q × Q. It then holds that G �S (G/≈).

Proof Let T = 〈QT , �T ,→T , Q◦
T , MT 〉 be any automaton. Suppose S(G ‖ T) is non-

blocking, we shall attempt to prove that S(G/≈ ‖ T) must be non-blocking (The proof for
the conversed case is similar). Pick any yG ∈ QG so that ([x◦

G], x◦
T)

s�⇒S ([yG], yT) for
some s ∈ �∗, x◦

G ∈ Q◦
G , x

◦
T ∈ Q◦

T and yT ∈ QT . Note that [x◦
G] ∈ Q̃G must hold. By

Proposition 3.2.3.(C1), it follows from induction on concatenated transitions of any trace
in ([x◦

G], x◦
T)

s�⇒S ([yG], yT) that there exists y′
G ∈ [yG] so that (x◦

G , x◦
T)

s�⇒S (y′
G , yT)

in S(G ‖ T), i.e. S(G ‖ T)
s�⇒S (y′

G , yT). Moreover, since S(G ‖ T) is non-blocking,

(y′
G , yT)

tω�⇒S in S(G ‖ T) for some t ∈ �∗ must hold. Again from Proposition 3.2.3.(C2),

we can conclude through induction that ([y′
G], yT) = ([yG], yT)

tω�⇒S in S(G/≈ ‖ T). The
proof is indeed closed since yG is arbitrarily picked. ��

From Definition 3.2.2, we note that PWB is defined as such that if a regular event σ is to
execute at some state, then an equivalent state must be able to execute σ either directly or after
a delay of several silent steps with priority not lower than σ . The reason of this restriction
can be seen from the following example. For brevity of examples in the remainder, we take

123

Discrete Event Dynamic Systems

Fig. 4 Silent step with priority lower than its delayed regular event may not be mergable

the convention that, if not explicitly specified, the marking set of any automaton is {{ω}}with
prio(ω) = 1.

Example 5 Consider the automaton G given in Fig. 4. It follows from (P1) directly that
I �≈ II. If I and II are merged through some equivalence relation ∼ which generates G/∼, a
counterexample T can be constructed as given in Fig. 4 to witness that G ��S (G/∼), since
S(G ‖ T) is blocking while S(G/∼ ‖ T) is not.

Consider the automaton G given in Fig. 4 again. The failure of the abstraction is in fact
caused by the reachable state (I, i) in S(G ‖ T), since τ(2) in i will not be preempted by
the shared event σ , whose priority is higher than τ(2). However, this preemption indeed will
happen in ([I], i) in S(G/∼ ‖ T) due to the state merging. In this regard, our idea to ensure
conflict equivalence is to add further restriction on the automaton so that such “bad” stateswill
always be unreachable. As forG in Fig. 4, consider adding a new state IVwith a new transition

IV
τ(3)−−→ I. Furthermore, let IV be the only new initial state. For such an automaton G ′ as

given in Fig. 5, merging I and II does yield a conflict-preserving abstraction. The intuition
behind this modification is that, in order to visit II under synchronisation, IV must be visited

Fig. 5 Redundant silent step rule

123

Discrete Event Dynamic Systems

at first. However, when (IV, xT)
τ(3)−−→S (I, xT) is executed for some xT , the next step must be

(I, xT)
τ(2)−−→S (II, xT) since I cannot execute any synchronised event and xT cannot execute

any private event with priority higher than 3 either. This observation motivates the definition
of redundant silent step and it is shown in the following that merging a redundant silent step,
which is referred to as the redundant silent step rule, is a conflict-preserving abstraction.

Definition 3.2.5 LetG = 〈Q , �,→, Q◦, M〉 be aϒ-shaped automaton.A transition x
τ−→ x ′

with x, x ′ ∈ Q and τ ∈ ϒ is a redundant silent step if this is the only transition outgoing
from x , x /∈ Q◦ and y

α−→ x for any y ∈ Q implies α ∈ ϒ and prio(α) > prio(τ). An
equivalence ∼⊆ Q × Q on G is induced by the transition x

α−→ x ′ if x ∼ x ′ and for all
y ∈ Q − {x, x ′}, [y] is a singleton class.

From Definition 3.2.5, we note that a silent self-loop can never be a redundant silent step.
In addition, the definition of redundant silent step does not specifically handle the existence
of live-locks. The reason is that the active event set of the target state of a redundant silent
step can be completely preserved in the quotient automaton. This is stated by the following
lemma.

Lemma 3.2.6 Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped automaton and the equivalence

∼⊆ Q× Q is induced by the redundant silent step x
τ−→ x ′. It holds that G(x ′) = G/∼([x])

Proof It suffices to consider the case that [x] τ ′−→∼ [x] in G/∼ for some τ ′ ∈ ϒ . In this case,
[x] contains a τ ′-live-lock from G which is formed either by {x, x ′} or solely by {x ′} (solely
by {x} is clearly impossible). The case of solely by {x ′} is rather trivial, while when {x, x ′}
is a τ ′-live-lock, we must have x ′ τ ′−→ x since from the definition of redundant silent step,
prio(τ ′) > prio(τ) must hold. ��

Consider a redundant silent step xG
τ−→ x ′

G in aϒ-shaped automaton G with some regular
event σ so that prio(σ) < prio(τ), σ /∈ G(xG) and σ ∈ G(x ′

G), we can assert that xG and
x ′
G are never equivalent w.r.t. any PWB. Intuitively, this invalidates the property given in

Proposition 3.2.3 if it is assumed that the resulting quotient automaton and the original one

are “equivalent”. More precisely, for some state xT in a test automaton T , if xT
τ ′−→ for some

τ ′ ∈ �T \G where prio(τ ′) ≤ prio(τ), we must have (xG , xT)
τ ′−→S in S(G ‖ T), while

([xG], xT)
τ ′−→S may not hold in S(G/∼ ‖ T) when σ ∈ T (xT) and prio(σ) < prio(τ ′).

Interestingly, such (xG , xT) is never reachable in S(G ‖ T).

Proposition 3.2.7 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be a ϒ-shaped automaton and the

equivalence ∼⊆ QG × QG is induced by the redundant silent step x̄G
τ−→ x̄ ′

G. Let
T = 〈QT , �T ,→T , Q◦

T , MT 〉 be any automaton. For all x̄T ∈ QT so that T≤τ
prvt(x̄T) �= ∅,

(x̄G , x̄T) is not reachable in S(G ‖ T).

Proof We prove by contradiction. Pick any x̄T ∈ QT so that T≤τ
prvt(x̄T) �= ∅. Note that

(x̄G , x̄T) can never be initial. Thus, to reach (x̄G , x̄T), one shall first reach some (yG , yT)

where yG ∈ QG , yT ∈ QT so that yG
τ ′−→ x̄G with some τ ′ ∈ ϒ . From Definition 3.2.5,

it is clear that prio(τ ′) > prio(τ). This implies that (yG , x̄T) �τ ′−→S (x̄G , x̄T). With this
observation, we continue the proof by attempting to construct a trace from (yG , yT) to
(x̄G , x̄T), which must fail. Consider the following cases:

123

Discrete Event Dynamic Systems

(Case 1) T≤τ
prvt(yT) �= ∅. Let yT τ ′′−→ ȳT for some ȳT ∈ QT and τ ′′ ∈ T≤τ

prvt(yT). Clearly,

prio(τ ′′) < prio(τ ′), and we concatenate (yG , yT)
τ ′′−→S (yG , ȳT) (without losing

generality, we can assume that T<τ ′′
prvt (yT) = ∅). If T≤τ

prvt(ȳT) �= ∅ always holds for
such concatenation, then the construction is trapped in Case 1 and x̄G can never be
visited. Otherwise, let T≤τ

prvt(ȳT) = ∅, which leads to Case 2.

(Case 2) T≤τ
prvt(yT) = ∅. From (yG , yT), since only private events can be executed, con-

sider the possibility of concatenating (yG , yT)
τ ′−→S (x̄G , yT) in S(G ‖ T), since

executing a private transition in T indeed rolls the construction back to the begin-

ning of either Case 1 or 2. However, if (yG , yT)
τ ′−→S (x̄G , yT), it implies that the

next transition which can be concatenated must be (x̄G , yT)
τ−→S (x̄ ′

G , yT) since
prio(τ) < prio(τ ′) and executing any shared event with priority higher than τ in
(x̄G , yT) is not possible. Recall that yT �= x̄T due to T≤τ

prvt(x̄T) �= ∅, i.e. for any
zT ∈ QT so that (x̄G , zT) is reachable in S(G ‖ T), T≤τ

prvt(z̄T) = ∅must hold. This
indeed closes the proof. ��

Whenmerging a redundant silent step, states characterised in Proposition 3.2.7 are exactly
the “bad” states which potentially invalidate conflict equivalence. With this observation, the
following proposition is derived which is similar to Proposition 3.2.3.

Proposition 3.2.8 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be a ϒ-shaped automaton and the

equivalence ∼⊆ QG × QG is induced by the redundant silent step x̄G
τ−→ x̄ ′

G. Let T =
〈QT , �T ,→T , Q◦

T , MT 〉 be any automaton.
(i) For any transition ([xG], xT)

α−→S ([yG], yT) in S(G/∼ ‖ T), at least one of the
following two statements is true for any x ′

G ∈ [xG]:
a) There exists y′

G ∈ [yG] so that (x ′
G , xT)

p(α)��⇒S (y′
G , yT) in S(G ‖ T), or

b) (x ′
G , xT) is not reachable in S(G ‖ T).

(ii) For any transition (xG , xT)
α−→S (yG , yT) in S(G ‖ T), at least one of the following

two statements is true:

a) ([xG], xT)
p(α)−−→S ([yG], yT) in S(G/∼ ‖ T), or

b) (xG , xT) is not reachable in S(G ‖ T).

Proof Ad(i). If [xG] is a singleton, then statement a) holds trivially. Thus, we let [xG] = [x̄G].
In this case, note that if ([xG], xT)

α−→S ([yG], yT) is not driven by G, then statement a) must
be true as well since either (x̄G , xT)

α−→S (x̄G , yT) or (x̄G , xT)
τ−→S (x̄ ′

G , xT)
α−→S (x̄ ′

G , yT)

holds in S(G ‖ T) from Lemma 3.2.6. Thus, let ([xG], xT)
α−→S ([yG], yT) be driven by G.

This implies α ∈ G(x̄ ′
G) due to Lemma 3.2.6 and we pick x ′

G ∈ [xG]. There are two cases:

(Case 1) x ′
G = x̄ ′

G . We shall note that G(x̄ ′
G) = G/∼([x̄ ′

G]) from Lemma 3.2.6. Thus, in
this case, statement a) must hold.

(Case 2) x ′
G = x̄G . We directly suppose that statement a) is not true, i.e. (x̄G , xT) �p(α)��⇒S

(y′
G , yT) in S(G ‖ T) for any y′

G ∈ [yG]. This implies that T<τ
prvt(xT) �= ∅, since

otherwise, we must be able to execute (x̄G , xT)
τ−→S (x̄ ′

G , xT), which leads to Case
1. Note that T<τ

prvt(xT) �= ∅ implies T≤τ
prvt(xT) �= ∅. Thus, in this case, statement b)

must hold from Proposition 3.2.7.

123

Discrete Event Dynamic Systems

Ad (ii). Note that statement a) must hold if [xG] is a singleton. In addition, statement a) holds
for xG = x̄ ′

G as well from Lemma 3.2.6. Let xG = x̄G . If (xG , xT)
α−→S (yG , yT) is driven

by G, then yG = x̄ ′
G and statement a) holds from a transition ([xG], xT)

ε−→ ([yG], xT).

Let (xG , xT)
α−→S (yG , yT) be not driven by G. In this case, statement b) must hold from

Proposition 3.2.7 since prio(α) ≤ prio(τ), i.e. α ∈ T≤τ
prvt(xT). ��

In Proposition 3.2.8, both statements (i.a) and (ii.a) are synonymous to Proposition 3.2.3.
We are now in the position to state the redundant silent step rule as follows.

Theorem 3.2.9 [redundant silent step rule] Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped
automaton and the equivalence ∼⊆ Q × Q is induced by some redundant silent step. It
holds that G �S (G/∼).

Proof The proof is literally the same as the proof of Theorem 3.2.4 up to uniform substitution
of the equivalence relation. Note that for all states reached by the induction, statements (i.a)
and (ii.a) of Proposition 3.2.8 must hold. ��

3.3 Abstraction rules based on incoming equivalence

In the ordinary context without prioritised events, Flordal and Malik (2009) introduced sev-
eral abstraction rules based on incoming equivalence. Thist section adapts these rules for
prioritised events.

The motivation of introducing incoming equivalence is to pre-partition states that can be
reached in the same way; namely, when a state can be reached under synchronisation with
some test, an incoming equivalent state must be reachable under the synchronisation with
the same test as well. Incoming equivalence does not necessarily imply (ordinary) conflict
equivalence, but serves as a filter to enable two conflict-preserving abstraction rules, i.e. the
active events rule and the silent continuation rule. The key property of incoming equivalence
in the ordinary context is, all states in the same class can be reached from the same state
with a regular event, possibly with some silent events before or after the regular event. Since
this property is rather cumbersome to achieve when considering prioritised events, a formal
definition of this property is first given and named as redirectability.

Definition 3.3.1 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be a ϒ-shaped automaton. An equiva-

lence ∼⊆ QG × QG is redirectable if and only if for any automaton T = 〈QT , �T ,→T

, Q◦
T , MT 〉, yG ∈ QG , yT ∈ QT and sT ∈ �∗

T \G , the following two statements hold:

(R1) (xG , xT)
σ−→S sT�⇒S (yG , yT) in S(G ‖ T) for any xG ∈ QG , xT ∈ QT and σ ∈ �G

implies that for all y′
G ∈ [yG], (xG , xT)

σ sT��⇒S (y′
G , yT) in S(G ‖ T);

(R2) S(G ‖ T)
sT�⇒S (yG , yT) implies that for all y′

G ∼ yG , S(G ‖ T)
sT�⇒S (y′

G , yT).

It is to observe from Definition 3.3.1 that, for a redirectable equivalence relation, the
synchronised behaviour can choose any state in a class to proceed if at least one state in
the class can be reached by a regular event followed by some private events (or the syn-
chronised behaviour is currently in the initial state). From this observation, redirectability
can commonly be utilised in such scenarios where a transition need to be redirected to a
successor, in which desired future behaviour is guaranteed. This feature is especially useful
when reasoning about the original behaviour from the abstracted behaviour. In this regard,
we review Lemma 3.1.6.(i), which is a general property for any arbitrary equivalence stating

123

Discrete Event Dynamic Systems

that a transition in the original behaviour can always be reconstructed from the abstracted
behaviour. Note that the existence statement “there exists y′ ∈ [y]...” in Lemma 3.1.6 does
not allow concatenating multiple reconstructed transitions, i.e. we can not guarantee that e.g.

([xG], xT)
α−→S ([yG], yT)

α′−→S ([zG], zT) implies the existence of x ′
G ∈ [xG], y′

G ∈ [yG]
and z′G ∈ [zG] so that (x ′

G , xT)
α−→S (y′

G , yT)
α′−→S (z′G , zT). Nevertheless, this problem can

be solved by requiring redirectability on an equivalence if a trace begins with a regular event
from G. This is stated by the following proposition which is inspired by (Flordal and Malik
2009, Lemma 2).

Proposition 3.3.2 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be aϒ-shaped automaton with a redi-

rectable equivalence ∼⊆ Q × Q on G. For any automaton T = 〈QT , �T ,→T , Q◦
T , MT 〉,

the following two statements hold:

(i) For any trace

([xG0], xT 0) α1−→S ([xG1], xT 1) α2−→S · · · αk−→S ([xGk], xT k) (19)

in S(G/∼ ‖ T) where k ≥ 1, α1 ∈ �G and αi ∈ AG ∪ AT for all i ∈ {2, · · · , k},
there exist x ′

G0 ∈ [xG0] and x ′
Gk ∈ [xGk] so that (x ′

G0, xT 0)
p(α1···αk)�����⇒S (x ′

Gk, xTk) in
S(G ‖ T);

(ii) If S(G/∼ ‖ T)
s�⇒S ([xG], xT) for some s ∈ (�G ∪ �T)∗, then there exists x ′

G ∈ [xG]
so that S(G ‖ T)

s�⇒S (x ′
G , xT).

Proof (i) We prove by induction:
(Base case) For k = 1, it holds immediately that there exists x ′

G0 ∈ [xG0] and x ′
G1 ∈ [xG1]

so that (x ′
G0, xT 0)

α1−→S (x ′
G1, xT 1) in S(G ‖ T) from Lemma 3.1.6.(i) since α1 ∈ �G .

(Inductive step) Suppose the proposition holds for some k ≥ 1, i.e. for some trace

([xG0], xT 0) α1−→S ([xG1], xT 1) α2−→S · · · αk−→S ([xGk], xTk) (20)

in S(G/∼ ‖ T) where α1 ∈ �G and αi ∈ AG ∪ AT for all i ∈ {2, . . . , k}, there exist
x ′
G0 ∈ [xG0] and x ′

Gk ∈ [xGk] so that

(x ′
G0, xT 0)

p(α1···αk)�����⇒S (x ′
Gk, xTk) (21)

in S(G ‖ T). From this hypothesis, we show that the proposition holds for k + 1 as well.
Consider any successive transition

([xGk], xT k) αk+1−−→S ([xGk+1], xT k+1) (22)

of trace Eq. 20. This indeed implies the existence of x ′′
Gk ∈ [xGk] and x ′

Gk+1 ∈ [xGk+1] so
that (x ′′

Gk, xT k)
αk+1−−→S (x ′

Gk+1, xTk+1) in S(G ‖ T) due to either Lemma 3.1.6.(i) (if Eq. 22
is driven byG) or Lemma 3.1.6.(ii) (if Eq. 22 is not driven byG). Now if [xGk] is a singleton,
the proof closes directly since x ′

Gk = x ′′
Gk . Otherwise, from trace Eq. 20, we shall find the

last regular transition driven by G, i.e. we consider the trace fragment

([xGi−1], xT i−1)
αi−→S ([xGi], xT i) αi+1···αk−−−−−→S ([xGk], xTk) (23)

from Eq. 20 where αi ∈ �G and αi+1 · · · αk ∈ (�T \G ∪ϒ)∗. Let sT = p(αi+1 · · · αk). From
this and due to the inductive hypothesis, we can extract the fragment

(x̄G , x̄T)
αi−→ sT�⇒S (x ′

Gk, xT k) (24)

123

Discrete Event Dynamic Systems

from Eq. 21 for some x̄G ∈ QG and x̄T ∈ QT . Since ∼ is redirectable, we have

(x̄G , x̄T)
αi sT��⇒S (x ′′

Gk, xT k) (25)

from (R1), which can be concatenated by (x ′′
Gk, xTk)

αk+1−−→S (x ′
Gk+1, xTk+1). (ii)We separate

the proof into two cases:

(Case 1) s ∈ �∗
T \G . This case holds directly from (R2). Note that we have proven an even

more general version of the current statement, i.e. the statement holds for all states
in [xG] instead of the existence of some state in [xG], which will be utilised in the
proof for the next case.

(Case 2) s /∈ �∗
T \G . Then let

S(G/∼ ‖ T)
sT�⇒S ([yG], yT)

σ−→S ([zG], zT)
t�⇒S ([xG], xT) (26)

where sT ∈ �∗
T \G , σ ∈ �G and t ∈ (�G ∪ �T)∗ so that sT σ t = s. From Case

1, for all y′
G ∈ [yG], S(G ‖ T)

sT�⇒S (y′
G , yT). From statement (i), there exists

y′′
G ∈ [yG] and x ′

G ∈ [xG] so that (y′′
G , yT)

σ t�⇒S (x ′
G , xT), which closes the proof.��

In order to achieve redirectability, we are going to define incoming equivalence for pri-
oritised events by adapting the ordinary version introduced in (Flordal and Malik 2009,

Definition 7). From the notion of PWB, intuitively, the transition sequence
ε��⇒

�:α
p(α)−−→
�:α

ε�⇒
1

is

tolerant against preemption and can possibly be utilised for the definition of incoming equiv-
alence w.r.t. prioritised events. In particular, the execution of

ε�⇒
1
cannot be disturbed by any

remaining part due to preemption. In fact, this requirement can be relaxed when considering
redirectability. Consider some new transition relations as follows.

Definition 3.3.3 Given aϒ-shaped automatonG = 〈Q , �,→, Q◦, M〉, define the following
extended transition relations:

(T4) −→! ⊆ Q × ϒ × Q: x
τ−→! y if x

τ−→ y and G<τ
rglr(x) = ∅.

(T5) ↪−→
n

⊆ Q × {ε} × Q: x
ε

↪−→
n

y if either of the following holds:

(i) n = 1 and x
ε�⇒
1

y, or

(ii) n ≥ 2, x
τ1−→
!

τ2−→
!

· · · τk−→
!

y, k ≥ 1 and lo({τ1 · · · τk}) = n.

Transition relations introduced in Definition 3.3.3 are generally more restrictive than
those in Definition 3.2.1 in that preemption through regular events shall never take place on
a ↪→-transition before the last state. Note that the new transition symbol “↪→” is utilised

intentionally to differ from → and ⇒ since when n ≥ 2, x
ε

↪−→
n

x generally does not hold

for an arbitrary state x , because at least one τ(n) transition must exist within
ε

↪−→
n
. Based on

Definition 3.3.3, the adapted definition of incoming equivalence is presented as follows.

Definition 3.3.4 Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped automaton. An equivalence
∼inc ⊆ Q × Q on G is an incoming equivalence if and only if for any x, x ′ ∈ Q so that
x ∼inc x ′, all the following statements hold:

(I1) For any σ ∈ �, n ∈ N and y ∈ Q, y
ε��⇒

�:σ
σ−−→

�:σ
ε

↪−→
n

x ⇔ y
ε��⇒

�:σ
σ−−→

�:σ
ε

↪−→
n

x ′ where
� = G<σ

rglr(y);

123

Discrete Event Dynamic Systems

(I2) For any n ∈ N, Q◦ ε
↪−→
n

x ⇔ Q◦ ε
↪−→
n

x ′;

(I3) If x �= x ′, then for any y ∈ Q and τ ∈ ϒ , y
τ−→ ε�⇒ x or y

τ−→ ε�⇒ x ′ implies G<τ
rglr(y) = ∅.

Incoming equivalence distributes over arbitrary union. Hence, it is legit to utilise ∼inc

to denote the coarsest incoming equivalence of an automaton. In addition, any equivalence
finer than an incoming equivalence is an incoming equivalence as well. Thus, the notation
of ∼⊆∼inc is often utilised to indicate that ∼ is an incoming equivalence. Similar to the
ordinary version in Flordal and Malik (2009), Definition 3.3.4 attempts to equalise states
which can be reached in the same way, i.e. only the past of a state is considered and its
future behaviour is totally ignored. However, such intuition is inadequate when prioritised
events are taken into consideration, since redirectability requires that the same state yT
from some test T should be reached before and after abstraction. If no restrictions over
the future behaviour of incoming equivalent states are given, redirectability can be easily
invalidated if two equivalent states have different preemptive power. In addition, we notice
that when abstracting an automaton through quotient automaton construction, it is almost
always required that the quotient automaton of a ϒ-shaped automaton shall be ϒ-shaped
as well, which can not be guaranteed solely by incoming equivalence. To this end, we first
introduce our definitions of active-event equivalence and silent-continuation equivalence.

Definition 3.3.5 Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped automaton. An equivalence
∼ae ⊆ Q × Q on G is an active-event equivalence if for any x, x ′ ∈ Q so that x ∼ae x ′ and
x �= x ′, the following two statements hold:

(AE1) Gslnt(x) = Gslnt(x ′) = ∅;
(AE2) Grglr(x) = Grglr(x ′).

Definition 3.3.6 Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped automaton. An equivalence
∼sc ⊆ Q × Q on G is a silent-continuation equivalence if for any x, x ′ ∈ Q so that x ∼sc x ′
and x �= x ′, all the following statements hold for some τ ∈ ϒ :

(SC1) τ ∈ G(x) ∩ G(x ′);
(SC2) G<τ

rglr(x) = G<τ
rglr(x

′) = ∅;
(SC3) Neither x nor x ′ is in any live-lock.

Similar to ∼inc, we utilise ∼ae, ∼sc to denote the coarsest active-event equivalence and
silent-continuation equivalence and write ∼⊆∼ae or ∼⊆∼sc to denote that ∼ is an equiva-
lence of the corresponding type, respectively. By combining ∼inc with either ∼ae or ∼sc, the
redirectability can be achieved.

Proposition 3.3.7 Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped automaton with an equiva-
lence ∼⊆ Q × Q on G be such that either ∼⊆∼inc ∩∼ae or ∼⊆∼inc ∩∼sc. It holds that
∼ is redirectable.

Before proceeding to prove Proposition 3.3.7, note that ∼ae imposes a relatively strong
restriction on equivalent states that silent events are never active on any state in a non-singleton
class. Readers familiar with Flordal and Malik (2009) may be curious about the possibility
of relaxing Definition 3.3.5 to equate states with regular active events delayed by

ε�⇒
1
, i.e., by

defining �ae(x) := {σ ∈ � | x ε�⇒
1

σ−→}, one may expect that x ∼ x ′ when �ae(x) = �ae(x ′).
However, combining such a “relaxed” active-event equivalence with incoming equivalence
does not guarantee conflict equivalence. Consider the following example:

123

Discrete Event Dynamic Systems

Example 6 Consider automataG and T given in Fig. 6.Note thatG isϒ-shaped and I ∼inc III
clearly holds since state III can be reached from the initial state through τ ∗

(1). Furthermore,
from �ae(x) = �ae(x ′), we equate I and III from the “relaxed” active-event equivalence,
which results in G/∼. In this case, although ([II], ii) is reachable in S(G/∼ ‖ T), (II, ii) is

not reachable in S(G ‖ T) since i
τ(2)−−→ ii cannot happen before I

τ(1)−−→ III and the transition

I
σ−→ II is labelled by a shared event σ . One observes that in this example, I

τ(1)−−→ III somewhat
“disables” I

σ−→ II although both events are with the same priority. In this case, equating I and
III does not guarantee conflict equivalence, especially when both states have different future
behaviour, e.g. one leads to a non-blocking future while another blocks. Finally, it is also

worth noting that “preserving” I
τ(1)−−→ III into a τ(1)-self-loop (which is against the quotient

automaton construction) in G/∼ does not solve the issue, since a 1-live-lock will be formed
in the quotient automaton which was not existent in G.

As a counterexample, Example 6 shows that for two incoming equivalent states, addition-
ally requiring them to have the same preemptive power is essential to achieve redirectability.
Otherwise, private transitions in T may be inconsistently preempted. This can be guaranteed
by ∼ae or ∼sc, as being stated in the following lemma.

Lemma 3.3.8 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be aϒ-shaped automaton. Let∼⊆ Q×Q

be an equivalence on G so that either ∼⊆∼ae or ∼⊆∼sc holds. For any automaton T =
〈QT , �T ,→T , Q◦

T , MT 〉 and any trace

(xG , xT 0)
τ1−→S (xG , xT 1)

τ2−→S · · · τk−→S (xG , xT k) (27)

Fig. 6 Counterexample of equating incoming equivalent states with the same set of delayed active events

123

Discrete Event Dynamic Systems

in S(G ‖ T) where k ≥ 0 and τi ∈ �T \G for all i ∈ {1, . . . , k}, it holds that for any
x ′
G ∈ [xG], a trace

(x ′
G , xT 0)

τ1−→S (x ′
G , xT 1)

τ2−→S · · · τk−→S (x ′
G , xT k) (28)

exists in S(G ‖ T) as well.

Proof The claim is trivially true from (AE1), (AE2), (SC1) and (SC2). ��
At the current stage, the fundamental components for achieving redirectability have indeed

been collected. In fact, we can temporarily define a “strengthened incoming equivalence”,
denoted by ∼!

inc, by strengthening Definition 3.3.4 as such that

• all ↪→-transitions are uniformly replaced by
ε�⇒
1
(strengthens (I1) and (I2)) and

• “implies G<τ
rglr(y) = ∅” in (I3) is uniformly replaced by “implies τ = τ(1)” (strengthens

(I3)).

Within this definition, redirectability could be easily achieved by either ∼!
inc ∩ ∼ae or

∼!
inc ∩ ∼sc, i.e. a slightly strengthened version of Proposition 3.3.7 (which can be obtained

by uniformly substituting ∼inc with ∼!
inc) can be easily shown to be true. Instead of proving

it formally, we consider the following example, in which we utilise a test T to give us some
intuition of why substituting ∼inc with ∼!

inc in Proposition 3.3.7 yields a statement that
obviously holds. The observations from this example will be generalised later on, to support
the proof of Proposition 3.3.7.

Example 7 Consider automata G and T given in Fig. 7. Note that in G, states are partitioned
by the equivalence ∼ so that (II, IV) ∈ ∼ ⊆ ∼!

inc ∩ ∼ae. In this case, ∼ is redirectable. We
consider synchronising G with an automaton T . In particular, since state (II, ii) is reachable,
the reachability of state (IV, ii) should be guaranteed as well to achieve redirectability since
II ∼ IV. This must hold since the only silent predecessor of IV, i.e. III, reaches IV via
τ(1). Thus, regardless the priority of successive transition in T , G can always execute all its
τ(1)-transitions first, then T executes its private transitions. However, this is not the case if

we replace the transition label of III
τ(1)−−→ IV by e.g. τ(2), which results in G ′. The resulting

equivalence relation ∼′ is no longer redirectable, since (IV′, ii) is rendered unreachable.

Despite the awareness that the strengthened incoming equivalence contributes to achieve
redirectability, we are interested in a more relaxed definition, i.e. utilising the original
Definition 3.3.4. By reviewing Example 7, the statement “G can always execute all its
τ(1)-transitions first, then T executes its private transitions” can be relaxed by ↪→-transitions
while still preserving redirectability. In the following, we consider the properties of ↪→-
transitions by mainly focusing on traces under synchronisation with only private events.
Such traces are referred to as asynchronous traces. Recall that from Definition 3.3.3, the
execution of a ↪→-transition cannot be preempted by regular events. This is then reflected
by (I3) in that, for some state x that is incoming equivalent to another state x ′, we require
that each incoming silent transition sequence to x is indeed a ↪→-transition. This ensures that
reaching x indeed always utilises some transition sequence from a ↪→-transition preceding
to x . Note that temporarily in Lemma 3.3.9 and Proposition 3.3.10, we do not require either
automaton to be ϒ-shaped since the discussed properties are stated for traces instead of for
automata. This benefits some proofs in that two traces from their corresponding automata
can be freely swapped.

123

Discrete Event Dynamic Systems

Fig. 7 The conjunction of a strengthened incoming equivalence and an active-event equivalence is redirectable

Lemma 3.3.9 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 and T = 〈QT , �T ,→T , Q◦

T , MT 〉 be
two arbitrary automata and

(xG , xT 0)
τ1−→S (xG , xT 1)

τ2−→S · · · τk−→S (xG , xT k)
τk+1−−→S (yG , xTk) (29)

be an asynchronous trace in S(G ‖ T) so that k ≥ 0 and for all i ∈ {1, · · · , k},
(xG , xT i−1)

τ j−→S (xG , xT j) is driven by T and (xG , xTk)
τk+1−−→S (yG , xTk) is driven by

G. It holds that prio(τk+1) ≥ lo({τ1, · · · , τk}).
Proof Note that for all i ∈ {1, · · · , k}, (xG , xT i)

τk+1−−→ in G ‖ T . Thus, the current statement
must hold as the trace is in a shaped automaton S(G ‖ T). ��

The statement of Lemma 3.3.9 may seem verbose at first glance. Nevertheless, it induces
an interesting property of asynchronous traces in shaped synchronous compositions: each
time when the “transition-driving” automaton alternates, the priority of the silent event on
the next transition cannot elevate. Consider the sketch in Fig. 8, where an asynchronous
trace under shaped synchronous composition is given in grid. Points on the horizontal axis
correspond to states in QG , while those on the vertical axis correspond to states in QT .
Consider those states at which the driving automaton alternates, i.e. the “direction” of the
trace changes.We conclude from Lemma 3.3.9 thatm ≤ n ≤ r must hold. More importantly,
if the trace ends with a transition driven by G (this is indeed the case in Fig. 8), it can be
immediately concluded that the last “T -state” of the last state (xT k in Fig. 8) cannot execute
any private events whose priority is higher than any transition in the trace. At the same time,
the lowest priority of all transitions driven by G cannot be higher than the lowest priority of
any transition driven by T . These properties are formalised by the following proposition.

123

Discrete Event Dynamic Systems

Fig. 8 An asynchronous trace in shaped synchronous composition

Proposition 3.3.10 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 and T = 〈QT , �T ,→T , Q◦

T , MT 〉
be two arbitrary automata and

(xG0, xT 0)
τ1−→S (xG1, xT 1)

τ2−→S · · · τk−→S (xGk, xT k) (30)

be an asynchronous trace in S(G ‖ T) where k ≥ 1 and the last transition

(xGk−1, xT k−1)
τk−→S (xGk, xT k) is driven by G.

(i) Let n = lo({τ1, · · · , τk}). It holds that T<n
prvt(xT k) = ∅;

(ii) If at least one transition in Eq. 30 is driven by T ,then nG ≥ nT where

nG =lo({τi | (xGi−1, xT i−1)
τi−→S (xGi , xT i) is driven by G}); (31)

nT =lo({τi | (xGi−1, xT i−1)
τi−→S (xGi , xT i) is driven by T }). (32)

Proof Note that both statements hold trivially if all transitions in Eq. 30 are driven by G.
Thus, we assume that there exists at least one transition driven by T in Eq. 30.

(i) Let τ ∈ Tprvt(xT k) and consider the trace fragment

(xGi , xT i)
τi+1−−→S · · · τ j−→S (xGj , xT j)

τ j+1−−→S · · · τk−→S (xGk, xT k) (33)

where 0 ≤ i < j < k and all transitions before (xGj , xT j) are driven by T while all transitions
after (xGj , xT j) are driven by G. It follows immediately that prio(τ) ≥ lo{τ j+1, · · · , τk} ≥
prio(τ j+1). Furthermore, from Lemma 3.3.9, we have prio(τ j+1) ≥ lo{τi+1, · · · , τ j } ≥
prio(τi+1). This is sufficient for an induction to reason the entire trace.

(ii) Consider the trace fragment (xGi , xT i)
τi+1−−→S · · · τk−→S (xGk, xTk) where 0 < i < k

and all transitions are driven by G but (xGi−1, xT i−1)
τi−→S (xGi , xT i) is driven by T . The

current statement is clearly true since prio(τi+1) ≥ nT from statement (i) by swapping G
and T , and nG ≥ prio(τi+1) must hold as well. ��

CombiningProposition 3.3.10 andLemma3.3.8,we are now in the position to conclude the
following Proposition 3.3.11. Specifically, part (ii) of the proposition will be the key property

123

Discrete Event Dynamic Systems

to establish Proposition 3.3.7. Note that the Example 7 is a special case of 3.3.11.(ii) and we
suggest the reader to first consider this statement. For the case that either all transitions in
Eq. 34 are driven by G or by T , the proof of 3.3.11.(ii) is straight forward. For the general
case, Proposition 3.3.11.(ii) is established via the iterative construction in 3.3.11.(i). Also
note that we again require G to be ϒ-shaped from now on.

Proposition 3.3.11 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be a ϒ-shaped automaton and

(xG0, xT 0)
τ1−→S (xG1, xT 1)

τ2−→S · · · τk−→S (xGk, xT k) (34)

be an asynchronous trace in S(G ‖ T) where k ≥ 0. Let n = lo({τi | (xGi−1, xT i−1)
τi−→

(xGi , xT i) is driven by G}) and

x ′
G0

τ ′
1−→ x ′

G1

τ ′
2−→ · · · τ ′

k′−→ x ′
Gk′ (35)

with k′≥ 0 be a trace in G so that all events on this trace are silent, lo({τ ′
1, · · · , τ ′

k′ }) = n

and for all i ′ ∈ {1, · · · , k′}, G<τ ′
i

rglr (x
′
Gi ′−1) = ∅.3 The following two statements hold:

(i) Let k ≥ 1, k′ ≥ 1 and let the last transition (xGk−1, xTk−1)
τk−→S (xGk, xT k) in Eq. 34

be driven by G. Under these assumptions, we have (x ′
G0, xT 0)

p(τ1···τk)�����⇒S (x ′
Gk′ , xTk) in

S(G ‖ T) where the last transition is driven by G;
(ii) Let ∼⊆ QG × QG be an equivalence on G so that either ∼⊆∼ae or ∼⊆∼sc. If

xGk ∼ x ′
Gk′ , then (x ′

G0, xT 0)
p(τ1···τk)�����⇒S (x ′

Gk′ , xTk) in S(G ‖ T).

Proof Note that the restriction G
<τ ′

i
rglr (x

′
Gi ′−1) = ∅ for i ′ ∈ {1, · · · , k′} excludes the pos-

sibility of preemption through regular events before reaching x ′
Gk′ . For convenience, let

n′ = lo({τ ′
1, · · · , τ ′

k′ }).
(i) It suffices to construct an asynchronous trace from (x ′

G0, xT 0) to (x ′
Gk′ , xT k) which will

not be influenced by shaping and the last transition is driven by G. Let i ′ = j = 0 and we
start the construction from the first state (x ′

Gi ′ , xT j) = (x ′
G0, xT 0). Note that due to Case 2

of Step 2 in the following, it is not possible to reach x ′
Gk′ before xTk is reached.

(Step 1) Consider two possible cases:

(Case 1) Only j = k holds, i.e. xTk is reached. Consider the trace given in Eq. 34 and from
Proposition 3.3.10.(i), it follows that T<n

prvt(xTk) = ∅. Since n = n′ is required,
we are able to directly complete the construction by concatenating the remaining
transitions drivenbyG to reach x ′

Gk′ , i.e.wemust have (x ′
Gi ′ , xTk)

ε�⇒S (x ′
Gk′ , xT k)

where all transitions are driven by G in S(G ‖ T), since priority of all remaining
transitions driven by G cannot be lower than any τ ∈ Tprvt(xT k) and preemption
through shared events is impossible. This terminates the construction.

(Case 2) Neither i ′ = k′ nor j = k holds. Proceed to Step 2.

(Step 2) Since preemption through shared prioritised events is not possible, we can proceed
from (x ′

Gi ′ , xT j) with either one transition driven by G or one driven by T , or both.
Consider the two possible cases:

(Case 1) prio(τ ′
Gi ′+1) �= n′. Then concatenate either (x ′

Gi ′ , xT j)
τ ′
i ′+1−−→S (x ′

Gi ′+1, xT j) or

(x ′
Gi ′ , xT j)

τ j+1−−→S (x ′
Gi ′ , xT j+1) according to their priority and update either i ′ :=

3 Here, x ′
Gi ′−1 denotes the previous state of x

′
Gi ′ in Eq. 35. This style of notation is utilised later on as well.

123

Discrete Event Dynamic Systems

i ′ +1 or j := j +1, respectively. Note that each time when the current case is met,
we must have not reached x ′

Gk′ yet since the transition with the lowest priority in
Eq. 35 has not been reached yet. Go back to Step 1.

(Case 2) prio(τ ′
Gi ′+1) = n′. Since n = n′ was required, from Proposition 3.3.10.(ii), it

follows that prio(τ ′
Gi ′+1)=n≥ lo({τi |(xGi−1, xT i−1)

τi−→S (xGi , xT i) is driven by
T }). Thus, we are able to concatenate the remaining transitions driven by T to reach
xTk , i.e. we have (x ′

Gi ′ , xT j)
sT�⇒S (x ′

Gi ′ , xTk) where all transitions are driven by T
in S(G ‖ T) and sT ∈ T ∗

prvt is the remaining private event sequence in T . Update
j := k and go to Step 1. We will be in Case 1 of Step 1.

(ii) The current statement holds trivially if all transitions in Eq. 34 are driven byG. In addition,
the current statement holds directly if all transitions in Eq. 34 are driven by T from Lemma
3.3.8. Thus, it suffices to consider Eq. 34 as such that it includes at least one transition driven
by G and one transition driven by T . In this case, if the last transition in Eq. 34 is driven by
G, the current statement holds directly as well from statement (i). The only remaining case is

that Eq. 34 ends with such a trace fragment (xGi , xT i)
τi+1−−→S · · · τk−→S (xGk, xT k) with i ∈

{1, · · · , k−1}where all transitions are driven by T (i.e. xGi = xGk) and (xGi−1, xT i−1)
τi−→S

(xGi , xT i) is driven by G. From statement (i), (x ′
G0, xT 0)

p(τ1···τi)�����⇒S (x ′
Gk′ , xT i) in S(G ‖ T)

holds. Furthermore, due to Lemma 3.3.8, we must be able to concatenate the remaining

transitions driven by T to reach xTk , i.e. (x ′
Gk′ , xT i)

p(τi+1···τk)������⇒S (x ′
Gk′ , xTk). ��

Proposition 3.3.11.(ii) shows us an important property between asynchronous traces when
preemption through shared events is excluded: for two traces with the same lowest priority
and both final states are equivalent w.r.t. either∼ae or∼sc, they can be utilised to synchronise
the same private-event trace. This matches the definition of ↪→-transition which is utilised in
Definition 3.3.4. With all the preparation, we are now ready to prove that Proposition 3.3.7
is true.

Proof (Proof of Proposition 3.3.7) We establish (R1) as follows. Given any sequence of
transitions (xG , xT)

σ−→S sT�⇒S (yG , yT) in S(G ‖ T) with σ ∈ �G , we pick any arbitrary
y′
G ∈ [yG]. If y′

G = yG , we directly obtain (xG , xT)
σ sT��⇒S (y′

G , yT), which settles the trivial

case. We now assume y′
G �= yG and pick x̄G ∈ QG and x̄T ∈ QT so that (xG , xT)

σ−→S

(x̄G , x̄T)
sT�⇒S (yG , yT) in S(G ‖ T). For the fragment (x̄G , x̄T)

sT�⇒S (yG , yT), there must
exist a silent transition sequence that connects x̄G and yG in G, and by (I3), this silent

transition sequence must be able to be written in the form of x̄G
ε

↪−→
n

yG with some n ∈ N.

From (I1), for each y′
G , we must have some x̄ ′

G ∈ QG so that xG
ε��⇒

�:σ
S σ−−→

�:σ
S x̄ ′

G
ε

↪−→
n

y′
G

where � = G<σ
rglr(xG). Clearly, we directly have (xG , xT)

σ�⇒S (x̄ ′
G , x̄T). In addition, since

we are having both x̄G
ε

↪−→
n

yG and x̄ ′
G

ε
↪−→
n

y′
G , (x̄

′
G , x̄T)

sT�⇒S (y′
G , yT) can also be guaranteed

from Proposition 3.3.11.(ii) or directly from Lemma 3.3.8. This indeed shows that (R1) of
Definition 3.3.1 is fulfilled. The proof for (R2) is similar by only considering (x̄G , x̄T)

sT�⇒S
(yG , yT) and letting (x̄G , x̄T) be any initial state in S(G ‖ T). ��

With Proposition 3.3.7 proved, the conjunction of ∼inc with either ∼ae or ∼sc guarantees
that a trace in the original behaviour can be reconstructed from a trace after abstraction. To
imply conflict-equivalence (which is an if-and-only-if statement), a similar property in the
converse direction is to clarify as well.

123

Discrete Event Dynamic Systems

Proposition 3.3.12 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be a ϒ-shaped automaton with an

equivalence∼⊆ QG×QG onG so that either∼⊆∼ae or∼⊆∼sc holds. For any automaton
T = 〈QT , �T ,→T , Q◦

T , MT 〉 and any transition (xG , xT)
α−→S (yG , yT) in S(G ‖ T), it

holds that ([xG], xT)
p(α)−−→S ([yG], yT) in S(G/∼ ‖ T).

Proof If xG ∼ yG , α ∈ ϒ and (xG , xT)
α−→S (yG , yT) is driven by G, we will have a tran-

sition ([xG], xT)
ε−→S ([yG], yT) = ([xG], xT) in S(G/∼ ‖ T). Otherwise, ([xG], xT)

α−→
([yG], yT) in G/∼ ‖ T . This transition will clearly not be shaped due to the definition of
∼ae and ∼sc. ��

We are now in the position to state two conflict-preserving abstraction rules, i.e. the active
events rule and the silent continuation rule, in Theorems 3.3.14 and 3.3.15. For the active
events rule, the following lemma is given to simplify the proof.

Lemma 3.3.13 Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be aϒ-shaped automaton with an equiv-

alence∼⊆∼ae. For any automaton T = 〈QT , �T ,→T , Q◦
T , MT 〉, if ([xG], xT)

sT p(α)���⇒S in
S(G/∼ ‖ T) for some xG ∈ QG, xT ∈ QT , sT ∈ �∗

T \G and α ∈ AG, then for all x ′
G ∈ [xG],

(x ′
G , xT)

sT p(α)���⇒S in S(G ‖ T).

Proof Recall that for any non-singleton class [xG], Gslnt(xG) = ∅ must hold. Consider two
cases:

(Case 1) α ∈ ϒ . If there is some trace in ([xG], xT)
sT�⇒S where all transitions are not driven

by G, the current statement is directly true due to Lemma 3.3.8. Otherwise, let

([xG], xT)
tT�⇒S ([x̄G], yT)

τ−→S ([yG], yT)
uT�⇒S (36)

in S(G/∼ ‖ T) for some τ ∈ ϒ , x̄G , yG ∈ QG , yT ∈ QT , tT uT = sT ,
([x̄G], yT)

τ−→S ([yG], yT) is driven by G and all transitions in the fragment
([yG], yT)

uT�⇒S are not driven by G. Note that all states on [xG] ε�⇒∼ [x̄G] in
G/∼ are singletons. Thus, there must exist y′

G ∈ [yG] so that (xG , xT)
tT�⇒S

(x̄G , yT)
τ−→S (y′

G , yT) in S(G ‖ T). In addition, (y′
G , yT)

uT�⇒ in S(G/∼ ‖ T)

must hold due to Lemma 3.3.8.
(Case 2) α ∈ �G , i.e. p(α) = α and we have ([xG], xT)

sT�⇒S α−→S in S(G/∼ ‖ T). Fol-
lowing Case 1, if there exists a trace on the fragment ([xG], xT)

sT�⇒S where all
transitions are not driven by G, then the current statement holds directly in that for
all x ′

G ∈ [xG], α ∈ G(x ′
G) holds. Otherwise, consider concatenating an α transition

at the end of Eq. 36, i.e.

([xG], xT)
tT�⇒S ([x̄G], yT)

τ−→S ([yG], yT)
uT�⇒S α−→S . (37)

Recall that all transitions on the fragment ([yG], yT)
uT�⇒S are not driven by G,

i.e. before executing the final
α−→S -transition, [yG] will not execute any transition.

Thus, from Lemma 3.3.8, (xG , xT)
tT�⇒S (x̄G , yT)

τ−→S (y′
G , yT)

uT�⇒S α−→S for
some y′

G ∈ [yG] must hold. ��

Theorem 3.3.14 [active events rule] Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be a ϒ-shaped

automaton with an equivalence ∼⊆∼ae ∩ ∼inc on G. It holds G �S (G/∼).

123

Discrete Event Dynamic Systems

Proof Let T = 〈QT , �T ,→T , Q◦
T , MT 〉 be any automaton:

(⇒) Suppose S(G ‖ T) is non-blocking. Pick xG ∈ QG , xT ∈ QT and s ∈ (�G ∪ �T)∗
so that S(G/∼ ‖ T)

s�⇒S ([xG], xT). By Proposition 3.3.2.(ii), there exists x ′
G ∈ [xG] so

that S(G ‖ T)
s�⇒S (x ′

G , xT) and due to the non-blockingness of S(G ‖ T), for each 	 ∈
MG ∪ MT , there exists ω ∈ 	 so that (x ′

G , xT)
tω�⇒S in S(G ‖ T) for some t ∈ (�G ∪�T)∗.

By Proposition 3.3.12, it holds that ([xG], xT)
tω�⇒S .

(⇐) Suppose S(G/∼ ‖ T) is non-blocking and pick xG ∈ QG , xT ∈ QT and s ∈ (�G ∪
�T)∗ so that S(G ‖ T)

s�⇒S (xG , xT). From Proposition 3.3.12 and the non-blockingness
of S(G/∼ ‖ T), for each 	 ∈ MG ∪ MT , there exists ω ∈ 	 and t ∈ (�G ∪ �T)∗ so that

S(G/∼ ‖ T)
s�⇒S ([xG], xT)

tω�⇒S . There are two cases:

(Case 1) t ∈ �∗
T \G . This case holds directly from Lemma 3.3.13. Note that the sub-case of

ω ∈ �T \G holds as well.

(Case 2) For any t , Case 1 does not hold. Then we must first have ([xG], xT)
sT�⇒ σ−→ for some

σ ∈ �G − 	 and sT ∈ �∗
T \G . By applying Lemma 3.3.13, we have

(xG , xT)
sT�⇒S (x̄G , x̄T)

σ−→S (yG , yT) (38)

in S(G ‖ T) for some x̄G , yG ∈ QG and x̄T , yT ∈ QT so that sT σ � t . From

Proposition 3.3.12 and the non-blockingness of S(G/∼ ‖ T), ([yG], yT)
t ′ω′��⇒S

must hold for some t ′ ∈ (�G ∪ �T)∗ and ω′ ∈ 	. Consider the following two
sub-cases (which are comparable with Case 1 and Case 2), i.e. either

(i) t ′ω′ ∈ �+
T \G . From Lemma 3.3.13, we directly have (yG , yT)

t ′ω′��⇒S .
(ii) Case 2.(i) does not hold for any t ′ω′. By applying Proposition 3.3.12 and then Lemma

3.3.13 again, we have altogether

(xG , xT)
sT�⇒S (x̄G , x̄T)

σ−→S tT�⇒S (ȳG , ȳT)
σ ′−→S (39)

in S(G ‖ T) for some ȳG ∈ QG , ȳT ∈ QT , tT ∈ �∗
T \G and σ ′ ∈ �G . From

Proposition 3.3.12, Proposition 3.3.2.(i) and the non-blockingness of S(G/∼ ‖ T),

there exists ȳ′
G ∈ [ȳG], ω′′ ∈ 	 and u ∈ (�G ∪ �T)∗ so that (ȳ′

G , ȳT)
uω′′��⇒S

and σ ′ � uω′′. Note that (x̄G , x̄T)
σ−→S tT�⇒S (ȳG , ȳT). From Proposition 3.3.7, ∼ is

redirectable and we thus have (x̄G , x̄T)
σ tT��⇒S (ȳ′

G , ȳT)
uω′′��⇒S . ��

Example 8 Consider the automaton G given in Fig. 9. I ∼inc III must hold since they both
are initial states and can be reached from IV via ρ. Besides, since they cannot execute silent

Fig. 9 Active events rule

123

Discrete Event Dynamic Systems

events and they have the same set of active regular events, I ∼ae III holds. Thus, I and III
can be merged through the active events rule which results in the conflict equivalent G/∼.

Theorem 3.3.15 [silent continuation rule] Let G = 〈QG , �G ,→G , Q◦
G , MG〉 be a ϒ-

shaped automaton with an equivalence ∼⊆∼inc ∩ ∼sc. It holds G �S (G/∼).

Proof Let T = 〈QT , �T ,→T , Q◦
T , MT 〉 be any automaton:

(⇒) Same as the proof of Theorem 3.3.14
(⇐) Suppose S(G/∼ ‖ T) is non-blocking. Pick xG ∈ QG and xT ∈ QT so that

S(G ‖ T)
s�⇒S (xG , xT) for some s ∈ (�G ∪ �T)∗. From Proposition 3.3.12 and the non-

blockingness of S(G/∼ ‖ T), for all 	 ∈ MG ∪ MT , there exists t ∈ (�G ∪ �T)∗ and

ω ∈ 	 so that S(G/∼ ‖ T)
s�⇒S ([xG], xT)

tω�⇒S . Consider three cases:

(Case 1) [xG] is a singleton and there exists some trace in ([xG], xT)
tω�⇒S which begins

with ([xG], xT)
σ−→S for some σ ∈ �G . From Propositions 3.3.7,∼ is redirectable.

Thus, this case is directly true from Proposition 3.3.2.(i).
(Case 2) [xG] is not a singleton. Since xG is not in any live-lock but there exists τ ∈

Gslnt(xG), there must exist some yG ∈ QG so that xG
ε�⇒ yG and Gslnt(yG) = ∅

in G. There are two further possibilities:

(i) There exists some sT ∈ �∗
T \G , yT ∈ QT and σ ∈ �G so that (xG , xT)

sT�⇒S

(yG , yT)
σ−→S in S(G ‖ T). Note that ([yG], yT) must be co-reachable since from

Proposition 3.3.12, ([yG], yT) is reachable in S(G/∼ ‖ T) which is non-blocking.
In addition, since Gslnt(yG) = ∅, [yG] must be a singleton. Thus we have reached a
Case 1 situation.

(ii) If Case 2.(i) does not hold, then there exist zG ∈ QG−{yG}, zT ∈ QT and tT ∈ �∗
T \G

so that (xG , xT)
tT�⇒S (zG , zT) and zG

τ ′−→ ε�⇒ yG for some τ ′ ∈ ϒ . In addition, the

execution of zG
τ ′−→S in (zG , zT) is disallowed. This could be caused by

a) (zG , zT)
σ−→S in S(G ‖ T) for some σ ∈ �G so that prio(σ) < prio(τ ′). This

again implies that [zG] is a singleton state from (SC1) and (SC2), i.e. a Case 1
situation is reached; or

b) zT is in some n-live-lock4 in T with n < prio(τ ′). Note that ([zG], zT) must be
co-reachable since from Proposition 3.3.12, ([zG], zT) is reachable in S(G/∼ ‖
T) which is non-blocking. In this situation, [zG] cannot execute any transition
driven byG in S(G/∼ ‖ T) as well (this is clear if [zG] is a singleton; otherwise
[zG] is not a singleton, then from (SC2), all its active events are not executable due
to the n-live-lock in T , which includes zT). This implies MG = ∅. In addition,
([zG], zT) is co-reachable in S(G/∼ ‖ T) implies that (zG , zT) is co-reachable
in S(G ‖ T).

Note that we do not need to take special care to the situation where the execution

of zG
τ ′−→S in (zG , zT) is preempted by a private active event in zT whose priority

is higher than τ ′. This situation must lead to either (i), (ii).a) or (ii).b) in the current
case.

(Case 3) [xG] is a singleton and all traces in ([xG], xT)
tω�⇒S begin with an event α /∈ �G . If

there exists some trace in ([xG], xT)
tω�⇒S where each state consists of a singleton

4 Here, we slightly abuse the definition of live-lock in T in that we uniformly substitute all Gslnt with Tprvt
in Definition 3.1.3.

123

Discrete Event Dynamic Systems

state from QG/∼, the current statement is trivially true. Otherwise, let

([xG], xT) = ([xG0], xT 0) α1−→S ([xG1], xT 1) α2−→S · · ·
· · · αk−→S ([xGk], xTk) αk+1−−→S ([xGk+1], xTk+1)

αk+2−−→S · · ·
(40)

be a trace in ([xG], xT)
tω�⇒S where k ≥ 0, [xGk+1] is not a singleton and all [xGi]

with i ∈ {0, . . . , k} are singletons. Clearly, ([xGk], xT k) αk+1−−→S ([xGk+1], xT k+1)

is driven byG/∼ since [xGk] is a singletonwhile [xGk+1] is not. Clearly, there exists
x ′
Gk+1 ∈ [xGk+1] so that (xGk, xT k)

αk+1−−→S (x ′
Gk+1, xTk+1) in S(G ‖ T). This

indicates that Case 3 always reaches a Case 2 situation if at least one non-singleton

state is visited in ([xG], xT)
tω�⇒S . ��

Example 9 Consider the automatonG given in Fig. 10. Clearly, II ∼inc III holds. In addition,
τ(2) ∈ Gslnt(II) ∩Gslnt(III) while G<2

rglr(II) = G<2
rglr(III) = ∅. This implies that II ∼sc III and

merging II and III yields a conflict-preserving abstraction.

At the end of the current section, we briefly introduce the adjustment of three further
abstraction rules introduced in Flordal and Malik (2009). The adjustment of these rules
follows immediately from the intuition in Flordal and Malik (2009). The first two rules are
the only silent incoming rule and the only silent outgoing rule. Both rules can be adjusted in
a straightforward manner by combining PWB and the silent continuation rule.

Theorem 3.3.16 [only silent incoming rule] Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped

automaton and let x̄ ∈ Q be such that x̄ is not in any live-lock, τ(1) ∈ G(x̄) and y
α−→ x̄

implies α = τ(1). For the automaton G ′ = 〈Q, �,→′, Q◦, M〉 with
→′= {(x, α, y) | x α−→ y and y �= x̄} ∪ {(x, α, y) | x τ(1)−−→ x̄

α−→ y}, (41)

it holds that G �S G ′.

Theorem 3.3.17 [only silent outgoing rule] Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped

automaton and let x̄ ∈ Q be such that x̄ is not in any live-lock, G(x̄) = {τ(1)} and z
α′−→ x̄

implies α′ /∈ ϒ . Let Q̄ := {y ∈ Q | x̄ τ(1)−−→ y} and G ′ = 〈Q − {x̄}, �,→′, Q◦′, M〉 with

Q◦′ =
{
Q◦ if x̄ /∈ Q◦
(Q◦ − {x̄}) ∪ Q̄ if x̄ ∈ Q◦ ; (42)

→′ = {(x, α, y) | x α−→ y and x̄ /∈ {x, y}} ∪ {(x, α, y) | x α−→ x̄ and y ∈ Q̄}. (43)

Fig. 10 Silent continuation rule

123

Discrete Event Dynamic Systems

It holds that G �S G ′.

Finally, the certain conflicts rule can be adjusted immediately as well. Generally, for non-
blockingness verification, we can merge all blocking states into a single blocking state. In
fact, Flordal and Malik (2009) showed several cases that the blocking behaviour in the future
cannot be avoided even upon reaching some co-reachable state. These states are handled by
the certain conflicts rule, which removes outgoing transitions from these states. Since the
transition removal may potentially render co-reachable states blocking, the set of blocking
states can be enlarged. For amore detailed discussion of the certain conflicts rule, see (Flordal
and Malik 2009, Example 3) and Malik (2004).

Theorem 3.3.18 [certain conflicts rule] Let G = 〈Q , �,→, Q◦, M〉 be a ϒ-shaped
automaton. Let Qc ⊆ Q be the set of co-reachable states in G and Quc := Q − Qc

the set of non-co-reachable states in G. Define two transition sets as

→1:= {x α−→ y | x ∈ Qc, α ∈ A, y ∈ Q and ∃y′ ∈ Quc, τ ∈ ϒ. G<τ
rglr(x) = ∅ ∧ x

τ−→ y′ };
(44)

→2:= {x σ−→ y | x ∈ Qc, σ ∈ �, y ∈ Qc and ∃y′ ∈ Quc. x
σ−→ y′ } (45)

and let G ′ = 〈Q, �,→ − (→1 ∪ →2), Q◦, M〉. It holds that G �S G ′.

3.4 Outline of the overall verification algorithm

With the abstraction rules developed above, we are now in the position to perform compo-
sitional non-blockingness verification w.r.t. prioritised events. Recall that given a family of
automata (Gi)1≤i≤k , the global behaviour amounts to G := S(G1 ‖ G2 ‖ · · · ‖ Gk). Here
each individualmoduleGi is subject to abstraction and any pair ofmodules can be substituted
by its synchronous composition. Except that we shall apply abstraction rules that account for
event priorities, the overall verification procedure as given in Algorithm 1 is essentially the
same as (Pilbrow and Malik 2015, Algorithm 1).

The main function IsNonConflicting takes a family of automata G = {G1, . . . ,Gk},
k ≥ 2, which is to be tested for non-conflictingness. For the preprocessing, we refer to
Observation 2.3.4 (hiding) and Remark 1 (shaping w.r.t. all private events). Note that hiding
preserves ϒ-shapedness. Hence, we can apply all abstraction rules developed in this section.
This is implemented by invoking the function ConflictPreservingAbstraction; Line
19.5 After each individual automaton has been processed, the while-loop in Line 8 is entered.
In each iteration, we pick a pair of two modules Gi and G j for composition. There are
various heuristics by which to take the specific choice; see Flordal and Malik (2009). The
result H = Gi ‖ G j is then processed in the same manner in the initial for-loop. Finally, H
is used to replace Gi and G j in the family G. Overall, the while-loop in Line 8 reduces the
size of G by one automaton per iteration. The loop is terminated if only one automaton G is
left. For the latter, non-blockingness is tested e.g. via enumeration based methods to obtain
the final result.

5 As being discussed in Pilbrow and Malik (2015), the order of the abstraction rules in ConflictPre-
servingAbstraction may influence the algorithm efficiency. In fact, the observation in Pilbrow and Malik
(2015) fits our use-case as well – we shall prefer putting abstraction rules with higher complexity to the
later stage of ConflictPreservingAbstraction, i.e. the abstractions through PWB and both rules based
on incoming equivalences. Both rules need high-order polynomial time computation time to perform state
partition iteratively. In comparison, the other three rules appearing in ConflictPreservingAbstraction
are generally less time-consuming since they can be performed on a per-state basis.

123

Discrete Event Dynamic Systems

Algorithm 1 Compositional non-blockingness verification.
1: function IsNonConflicting(G)
2: for all G ∈ G do
3: � ← {α ∈ U |α is private in G w.r.t. G}
4: G ← S�(G)

5: G ← Hide(G, �)

6: G ← ConflictPreservingAbstraction(G)

7: end for
8: while |G| > 1 do
9: pick Gi ,G j ∈ G and let H = Gi ‖ G j
10: � ← {α ∈ U | α is private in H w.r.t. G − {Gi ,G j } }
11: H ← S�(H)

12: H ← Hide(H , �)

13: H ← ConflictPreservingAbstraction(H)

14: G ← (G − {Gi ,G j }) ∪ {H}
15: end while
16: let G denote the only automaton left in G
17: return IsNonBlocking(S(G))
18: end function

19: function ConflictPreservingAbstraction(G)
20: G ←CertainConflictsRule(G)
21: G ←RedundantSilentStep(G)
22: G ←OnlySilentRules(G)
23: G ←PrioritisedWeakBisimulation(G)
24: G ←IncomingEquivalenceRules(G)
25: return G
26: end function

4 Example

To evaluate the performance of our compositional non-blockingness verificationmethodwith
prioritised events, consider the concatenated conveyor belts CB1 to CBk shown in Fig. 11.
In this scenario, workpieces are to be transported from the source on the left to the sink
on the right. Each of the components is equipped with a sensor to indicate the presence of
a workpiece. Besides, each conveyor belt is equipped with a motor which drives the belt.
The components are controlled in a modular fashion, with the respective automata given in
Fig. 12; see also Table 1 for a listing of all referenced events. Specifically, each conveyor belt
CBi is modelled as a local closed loop

Fi := Gi ‖ Hi , (46)

Fig. 11 Concatenated conveyor belts

123

Discrete Event Dynamic Systems

Fig. 12 Automata models for the conveyor belts example

with the special cases F0 and Fk+1 for source and sink, and with successive components Fi
and Fi+1 coupled by the automaton Ci . The overall model so far is given by

F := ‖0≤i≤k(Fi ‖ Ci) ‖ Fk+1, (47)

i.e., for a conveyor belt system with k conveyor belts, we have in total 2k + 3 automata.
Let MFi , MCi and MFk+1 be the marking set of each Fi , Ci and Fk+1, respectively, where
0 ≤ i ≤ k. These marking sets are given correspondingly by

MFi = MCi ={{ari }}; (48)

MFk+1 ={{ark+1}}. (49)

This definition indicates that at any state, each conveyor belt must be able to receive a
new workpiece in the future.

For a physcal implementation of the controller, we effectively implement the behaviour of
F with specific execution preferences. Actuators oni and of f i are assigned a higher priority
than the sensor events ari and lvi ; i.e., when in a state where the controller could either wait
for a sensor event to occur or execute an actuator event at some point in time, the physical
implementation of the controller will do the latter immediately. Likewise, the events sdi
for inter-module communication are preferred over actuator events. Only when in a state
where exclusively sensor events are enabled, the physical implementation will wait until one
such event is generated by the plant. Although intuitive from a technological perspective,

Table 1 Events in the conveyor
belts example

Event Description Priority

oni motori on 2

of f i motori off 2

ari sensori workpiece arrival 3

lvi sensori workpiece departure 3

sdi send workpiece from component i 1

123

Discrete Event Dynamic Systems

Table 2 State count and elapsed
time in sec

k mono. st. cnt. comp. st. cnt. mono. time comp. time

5 3.4 × 103 35 0.28 0.06

6 9.9 × 103 40 0.81 0.09

7 2.8 × 104 45 2.79 0.12

8 7.7 × 104 50 8.60 0.17

9 2.1 × 105 55 25.13 0.22

10 5.6 × 105 60 60.02 0.31

this scheme of execution preferences may render the overall model blocking even it was
non-blocking before introducing priorities. Hence our interest in the verification of S(F).

The performance of a prototypical software implementation of the abstraction rules dis-
cussed in our study is given in Table 2. The first column shows the number of conveyor belts.
The second and third column show the state count of the monolithic representation and the
final state count after applying compositional verification. In this example, the latter matches
the maximal state count experienced during the entire verification procedure. The fourth and
fifth column show the elapsed time for verification with or without applying compositional
verification. All computations are performed on a standard 2022 desktop computer (Intel
Core i7-10510U 2.30 GHz CPU with 16GB RAM; however, memory is not a limiting factor
for this example). Through comparing the fourth and fifth column, a substantial performance
improvement becomes evident.

5 Conclusion

In this paper, we address the verification of non-conflictingness for modular systems, where
each module is represented by a finite automaton. For this task, the literature proposes the
method of compositional verification, in which conflict equivalent abstractions and module
composition are alternated until only one module is left. This approach is well established
and gains significant computational benefits; see Flordal and Malik (2009); Su et al. (2010);
Ware and Malik (2012); Pilbrow and Malik (2015). Our main technical contribution is an
extension to account for event priorities. The latter is technically represented by a shaping
operator S(·) which removes transitions that are preempted by higher-priority events. Since
S(·) does not commute with synchronous composition (·) ‖ (·), the consideration of event
priorities requires an adaptation of the established abstraction rules. To this end, we introduce
a shaped quotient to account for silent live-locks and recover a variant of weak bisimulation
and related equivalences as basis for abstractions, that turn out conflict equivalent w.r.t.
prioritised events.

If compositional verification yields a negative result, it is of great practical interest to
resolve the present conflicts. For the situation without priorities, Malik and Ware (2020)
proposed how to extract a counter-example as diagnostic information; i.e., a path that leads
to a blocking state. Such diagnostic information may guide the programmer to accommodate
the situation for manually written PLC programs. At the current stage, we have an experi-
mental adaptation of the results in Malik andWare (2020) with a specific focus on composed
systems with event priorities that model SFCs. A more sophisticated strategy to address
conflicts is the systematic design of a supervisor that further restricts the overall system to

123

Discrete Event Dynamic Systems

avoid blocking configurations. Addressing extended finite automata (EFA) as base models,
Goorden et al. (2021) proposed a likewise compositional procedure to synthesise a so-called
coordinator. The composition of the coordinator with the original system is by construction
non-conflicting. For a future direction of research, one may investigate whether and how the
techniques proposed by Goorden et al. (2021) can be adapted to address prioritised events.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aho AV, Hopcroft JE, Ullman JD (1974) The Design and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, Massachusetts, USA

Blech JO, Ould Biha S (2011) Verification of PLC properties based on formal semantics in coq. In: Software
engineering and formal methods, pp 58–73

Cassandras CG, Lafortune S (2008) Introduction to Discrete Event Systems, 2nd edn. Springer, New York,
USA

Cleaveland R, Lüttgen G, Natarajan V (2007) Priority and abstraction in process algebra. Inform Comput
205(9):1426–1458

Fabian M, Hellgren A (1998) PLC-based implementation of supervisory control for discrete event systems.
Proceedings of the 37th IEEE Conference on Decision and Control 3, 3305–3310

Flordal H,Malik R (2009) Compositional verification in supervisory control. SIAM J Control Optim 48:1914–
1938

Flordal H, Malik R (2006) Modular nonblocking verification using conflict equivalence. In: 2006 8th Interna-
tional workshop on discrete event systems, pp 100–106

Goorden M, Fabian M, van de Mortel-Fronczak J, Reniers M, Fokkink W, Rooda J (2021) Compositional
coordinator synthesis of extended finite automata. Discrete Event Dynamic Syst 31:1–32

Hering de Queiroz M, Cury J, WonhamW (2005) Multitasking supervisory control of discrete-event systems.
Discrete Event Dynamic Syst 15:375–395

Lúttgen G (1998) Pre-emptive modeling of concurrent and distributed systems. PhD thesis, Universität Passau
Malik P (2003) From supervisory control to nonblocking controllers for discrete event systems. PhD thesis,

Universität Kaiserslautern
Malik R (2004) On the set of certain conflicts of a given language. IFAC Proceedings Volumes 37(18), 267–

272. 7th International Workshop on Discrete Event Systems (WODES’04), Reims, France, September
22-24 2004

Malik R, Ware S (2020) On the computation of counterexamples in compositional nonblocking verification.
Discrete Event Dynamic Syst 30:301–334

Malik R, Streader D, Reeves S (2004) Fair testing revisited: a process-algebraic characterisation of conflicts.
In: Automated technology for verification and analysis, pp 120–134

Milner R (1989) Communication and Concurrency. Prentice-Hall Inc, USA
Mohajerani S, Malik R, FabianM (2016) A framework for compositional nonblocking verification of extended

finite-state machines. Discrete Event Dynamic Syst 26:33–84

123

http://creativecommons.org/licenses/by/4.0/

Discrete Event Dynamic Systems

Moor T (2022) CompileDES: executable-code generation from synchronised libFAUDES automata. https://
fgdes.tf.fau.de/compiledes, Accessed 27 Jun 2022

Nicola RD, Hennessy MCB (1984) Testing equivalences for processes. Theoret Comput Sci 34(1):83–133
Pilbrow C, Malik R (2015) An algorithm for compositional nonblocking verification using special events. Sci

Comput Program 113:119–148
Qamsane Y, Abdelouahed T, Philippot A (2016) A synthesis approach to distributed supervisory control design

for manufacturing systems with Grafcet implementation. Int J Prod Res 55:1–21
Ramadge P, Wonham W (1987) Supervisory control of a class of discrete event systems. SIAM J Control

Optim 25:206–230
Schmidt K, de Queiroz MH, Cury JER (2007) Hierarchical and decentralized multitasking control of discrete

event systems. In: 2007 46th IEEE conference on decision and control, pp 5936–5941
Su R, van Schuppen JH, Rooda JE, Hofkamp AT (2010) Nonconflict check by using sequential automaton

abstractions based on weak observation equivalence. Automatica 46(6):968–978
Tang Y, Moor T (2022) Compositional verification of non-blockingness with prioritised events. 16th IFAC

Workshop on Discrete Event Systems (WODES) 55(28), 236–243
Verbakel JJ, Vos de Wael MEW, van de Mortel-Fronczak JM, Fokkink WJ, Rooda JE (2022) Supervisory

control of roadside units. IFAC-PapersOnLine 55(28), 79–86. 16th IFAC Workshop on Discrete Event
Systems WODES 2022

Ware S, Malik R (2012) Conflict-preserving abstraction of discrete event systems using annotated automata.
Discrete Event Dynamic Systems 22:451–477

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://fgdes.tf.fau.de/compiledes
https://fgdes.tf.fau.de/compiledes

	Compositional non-blockingness verification of finite automata with prioritised events
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic notation
	2.2 Finite automata
	2.3 Synchronous composition and non-conflictingness

	3 Conflict-preserving abstractions
	3.1 Partial shaping and quotient automata
	3.2 Prioritised weak bisimulation
	3.3 Abstraction rules based on incoming equivalence
	3.4 Outline of the overall verification algorithm

	4 Example
	5 Conclusion
	References

