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Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung einer Softwarebibliothek für ereignisdis-
krete Systeme (DES). Ereignisdiskrete Systeme besitzen einen diskreten Zustandsraum
in dem Übergänge ereignisgesteuert stattfinden. Für diese Klasse von Systemen wurde
Mitte der 80er Jahre von P.J. RAMADGE und W.M. WONHAM eine Regelungstheorie
entwickelt, die sog. RW Supervisory Control Theory (SCT). Mit dieser können ereig-
nisdiskrete Systeme als endliche Automaten modelliert werden. Dabei werden intera-
gierende Teile eines Systems als einzelne Automaten modeliert und zu einem größeren
Gesamtautomaten zusammengefügt, für den mittels einer vorgegebenen Spezifikation
eine Steuerung berechnet werden kann.

Bei der Modellierung großer Systeme mit mehreren Nebenläufigkeiten ergibt sich hier-
bei das Problem, dass die Größenordnung des Zustandsraumes nicht mehr von Rech-
nersystemen erfasst werden kann und damit die Berechnung einer Steuerung unmög-
lich wird. Zur Lösung des Problems der sogenannten Zustandsraumexplosion existie-
ren in der Literatur verschiedene Ansätze, von denen einer von KLAUS SCHMIDT am
Lehrstuhl für Regelungstechnik der Universität Erlangen-Nürnberg entwickelt wurde
[Sch05b].

In dieser Arbeit wurde ein Software-Modell eines Automaten zur Modellierung und
Steuerung von ereignisdiskreten Systemen erstellt. Dabei wurden zunächst zwei ab-
strakte Automatenmodelle auf ihre Eignung für Automatenalgorithmen untersucht.
Für das universeller einsetzbare Datenmodell wurde eine Spezifikation seiner Daten-
struktur durchgeführt, die als Klasse Generator mit Hilfe abstrakter Datentypen
(ADT) implementiert wurde. Nach der Umsetzung von Algorithmen für Automaten
und reguläre Sprachen für die Generator Klasse wurde eine für die SCT spezielle Er-
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weiterung um steuerbare Ereignisse diskutiert und als erweiterte Klasse cGenerator
implementiert. Basierend auf der cGenerator Klasse wurde der Algorithmus zur Be-
rechnung einer Steuerung für die SCT umgesetzt. Weiterhin wurden alle erforderlichen
Algorithmen zur Synthese von hierarchischen Steuerungen für dezentrale ereignisdis-
krete Systeme gemäß [Sch05b] implementiert.

Der praktische Teil der Arbeit bestand dabei in einer Implementierung des Automaten
Software-Modells mittels der Programmiersprache C++ und der darauf basierenden
Umsetzung der Algorithmen. Ergänzend wurde eine textbasierte Applikation entwi-
ckelt, mit der die implementierten Algorithmen getestet werden können. Das Ergebnis
der praktischen Arbeit, die C++ Klassenbibliothek LIBFAUDES, wird unter der GNU
Lesser General Public License (LGPL) im World Wide Web zur Verfügung gestellt.
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Chapter 1

Introduction

The Control theory of discrete event system is an action of research. This thesis covers
the framework provided by P.J. RAMADGE and W.M. WONHAM in [RW89] with the
extensions to hierarchical and decentralized control provided by KLAUS SCHMIDT in
his Phd Thesis [Sch05b].

In the late 80th RAMADGE and WONHAM introduced a framework regular languages
and finite automata for modelling and controling discrete event systems (DES). Besides
Petrinets this is the most important approach to the supervisory control of DES. A DES
is modeled as a finite automaton. a given regular language specification, a controller can
be computed such that the closed-loop system fulfills the specification. This concept of
monolithic supervisor computation is denoted as ”RW Supervisory Control Theory”
(SCT).

An ongoing research topic is the computation of supervisors for real world large-scale
systems like manufacturing systems. These have many concurrent activities whose
combinations all have to be modeled as single states in the RW supervisory control
theory. This leads to a huge number of states, the so called ”state space explosion”,
which cannot be handled by today’s computer technology. Many concepts have been
introduced for solving the state space explosion problem. The common feature of these
approaches is the use of vertical or horizontal system structure in hierarchical or decen-
tralized approaches. Using this system structure, the computation of the overall system
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is avoided. [Sch05b] combines both ideas in an approach for the hierarchical control of
decentralized DES. Concurrent activies in decentralized system models are abstracted
to their shared behavior on a higher level. This results in a multi level control hierar-
chy with a single supervisor on the highest level, controlling the abstracted behavior of
the overall system. This highest-level supervisor can be implemented efficiently using
decentralized supervisors in the lower levels.

This thesis deals with the aspects of implementing a generally applicable software li-
brary for supervisory control of DES that can be easily extended to different approaches.
The RW supervisory control theory is used as the base where other frameworks can be
put on. As an extension, the library provides all algorithms required for [Sch05b]. Data
models and algorithms are treated language independent for general object-orientated
programming. The practical work consists of developing such a library with the ob-
ject orientated programming language C++. Knowledge of the RW theory which is
completely described in [Won04], is assumed. Basic data types used in the thesis are
described in standard computer science literature like [AHU+83].

At present, there already exist some software packages for supervisory control of dis-
crete event systems. Well known are TCT [TCT], the UMDES SOFTWARE LIBRARY

[UMD] and SUPREMICA [Sup]. TCT provides a console application for the monolith-
ic supervisor synthesis. UMDES SOFTWARE LIBRARY by the University of Michigan is
comparable with the library developed as practical work in this thesis. Both libraries
do not exactly cover the same theoretical frameworks but implement RW supervisory
control theory as a common base.

DESUMA, a java based graphical user interface for [UMD] by the University of Michigan
and Mount Allison University, and SUPREMICA by Chalmers University of Technology
both provide a feature-rich graphical environment for basic supervisory control theory.
There may be other less known or publicly unavailable software packages which deal
with the computation of supervisors for DES. By now none of the these packages imple-
ment a theoretical framework preventing the state space explosion problem. Also there
is no public available source code for any of the packages.

This work is an effort to provide an open source software library with a free license1 for

1The practical result of this thesis, called the faudes library is publicly available at [fau] under the
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supervisory control of DES. The library has been developed with both high performance
and extensibility in mind. The public release of the library sources shall encourage
external researchers to use the library in their own projects or even contribute code for
further development of the library. The library provides a automaton base class for
automaton and language operations, an extened automaton model for RW supervisory
control theory and as an extension the algorithms for [Sch05b].

The outline of this work is as follows: After a short introduction to the RW supervi-
sory control theory in Chapter 2, a software model for finite automata is developed in
Chapter 3. the automata model, basic algorithms for regular languages and finite au-
tomata are discussed in Chapter 4. Chapter 5 describes the extension of the automata
model to fit the requirements of supervisory control theory, followed by the algorithm
for computing supervisors. Chapter 6 deals with efficient implementations of the algo-
rithms for the theoretical framework given in [Sch05b]. However, the development of a
data structure for the hierarchical decentralized architecture is beyond the scope of this
work and is covered in [Sch05a]. Finally the thesis concludes with some thoughts about
further development and usage of the created software library.

LGPL [LGP] license.

5





Chapter 2

Basics of Supervisory Control of
Discrete Event Systems

This chapter summarizes the most important results of the supervisory control theory
(SCT) of discrete event systems and thus provides a basis for the algorithms imple-
mented in the following chapters. A thorough description of the standard framework
for SCT introduced by P.J. RAMADGE and W.M. WONHAM (RW) is given in [Won04].
A less formal introduction to SCT can be found in [CL99].

2.1 Regular Languages and Finite Automata

In RW supervisory control theory, the behavior of DES is modeled by finite automata
and regular languages. For the further discussion some definitions are required. At
first the terms alphabet, string and formal language are defined. An alphabet is a set of
symbols, a string is a sequence of symbols and a language is a set of strings. Then de-
terministic and nondeterministic finite automata are introduced, followed by the terms
generated language, marked language, blocking and regular language.

An alphabet, usually denoted Σ is a finite set of distinct symbols Σ = {σ1, σ2, . . . , σn}. A
string is a sequence σi1σi2 . . . σik, σij ∈ Σ, k ∈ N of symbols.
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Σ+ denotes the set of finite symbol sequences of the form σi1σi2...σik where σij ∈ Σ for
i = 1, . . . , k. The empty string ε denotes the empty sequence containing no symbols,
where ε /∈ Σ. Σ∗ := {ε} ∪ Σ+ denotes the so called Kleene-Closure of the alphabet Σ.

The concatenation of s ∈ Σ∗ and t ∈ Σ∗ is written st ∈ Σ∗. The string s is denoted a
prefix, t is denoted a suffix of st.

Definition 2.1.1 (Formal Language [HU79]). A formal language L over an alphabet Σ,
also called language over Σ, is any subset L ⊆ Σ∗.

The definition includes both the empty language Ø and Σ∗ itself. There is a difference
between the empty language Ø and the string with no symbols ε. The prefix-closure
L := {s ∈ Σ∗ | ∃t ∈ Σ∗ s. t. (st ∈ L)} consists of all the prefixes of all strings in L, L ⊆ L.
The active event set after the string s is defined as Σ (s) := {σ | sσ ∈ L}.

Finite automata are introduced as a modeling framework to represent and manipulate
languages. While most of the RW control theory is described in the language frame-
work, finite automata are used to model the logical behavior of DES in practice.

Definition 2.1.2 (Automaton [HU79]). An automaton is a 5-Tuple, G := (X, Σ, δ, X0, Xm)

consisting of

• X : the set of states,

• Σ: the set of events,

• δ: the transition function is a partial function δ : X × Σ → 2X only defined on a
subset of Σ in any state x ∈ X ,

• X0: the set of initial states X0 ⊆ X ,

• Xm: the set of marked states Xm ⊆ X .

An automaton is called finite, if the set of states is finite. If the set of initial states X0

consists of a single state x0 and the transition function is unique, δ : X × Σ → X , the
automaton is called deterministic automaton. Otherwise it is called1 nondeterministic au-
tomaton. A nondeterministic automaton can always be transformed into a deterministic

1Note that the concept of ε-transitions in nondeterministic automata as found in [CL99] is not intro-
duced here as states connected by ε-transitions can always be modeled as one single state.
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one, if the set of states is finite. The corresponding algorithm is discussed in Chapter 4.

For convenience, δ is extended to a partial function on X×Σ∗ by the recursive definition

• δ (x, ε) := x

• δ (x, sσ) := δ (δ (x, s) , σ) for s ∈ Σ∗ and σ ∈ Σ

The active event set function Λ := X → 2Σ with Λ (x) := {σ | δ (x, σ)!} maps every state to
the respective set of events executable in this state. Λ (x) is called the active event set at
state x where δ (x0, s)! says that the transition is defined.

An example of a finite deterministic automaton with five states that operatates on the
alphabet Σ = {a, b} is shown in figure 2.1.

Figure 2.1: Example of a finite automaton

The generated language of an automaton G, L (G) contains all strings in G starting in an
initial state. The marked language Lm (G) contains all strings in G starting in an initial
state and ending in a marked state.

Definition 2.1.3 (Generated and Marked Language [Won04]). For a given automaton
G := (X, Σ, δ, X0, Xm) the generated language is defined as L (G) := {s ∈ Σ∗ | δ (x0, s)!}

and the marked language is defined as Lm (G) := {s ∈ Σ∗ | δ (x0, s) ∈ Xm}.

There is no unique way to construct an automaton that marks a given language. How-
ever, an automaton that marks a language with a minimum set of states is called a
canonical recognizer which is unique except for an isomorphism [HU79].

Definition 2.1.4 (Blocking and Nonblocking [CL99]). An automaton is called blocking if
Lm (G) ⊂ L (G) and nonblocking if Lm(G) = L(G).
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Blocking means there exists at least one string in the generated language of an automa-
ton which cannot be extended to reach a marked state. In nonblocking automata from
every string of the generated language there is a path to a marked state.

A state is accessible if it can be reached by a transition path from an initial state. In
contrast, a state is coaccessible if there is a transition path from the state to a marked
state.

Any language can be marked by a automaton, but only finite automata can be stored in
the memory of a computer. As there are languages which cannot be marked by a finite
automaton, e.g. L = {anbn | n ≥ 0}, the languages that can be used to represent DES are
restricted to the class of regular languages. It should be noted that some languages that
cannot be marked by finite automaton can be respresented by petri nets with a finite
transition structure.

Definition 2.1.5 (Regular Language[CL99]). A formal language is denoted regular if it
can be marked by a finite automaton. The distinct class of languages that can be marked
by finite automata is called the class of regular languages.

This is an important result as it means the behavior of DES modeled by finite automata
can always be described with regular languages.

Note that both deterministic finite automata and nondeterministic finite automata are
represented by the same class of languages as a finite nondeterministic automata can
always be converted into a finite deterministic automata and every deterministic au-
tomaton is also a nondeterministic automaton.

2.2 Supervisory Control Theory

The principle of supervisory control is restricting the behavior of a discrete event sys-
tem to a given specification. Let G := (X, Σ, δ, X0, Xm) be an automaton that models the
uncontrolled behavior of a discrete event system, namely the Plant. Let S be a super-
visor for G. S controls G in the closed feedback loop shown in figure 2.2 by disabling
events in the current state of G which would make the controlled system violate the
specification.
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Figure 2.2: The supervisor S controls the plant G in a feedback loop.

As there may be events which cannot be directly influenced by a supervisor, the set of
events is divided into two disjoint subsets: Σ = Σc ∪ Σuc

Σc contains the subset of controllable events whose execution can directly be prevented
by a supervisor, while Σuc yields the subset of uncontrollable events which cannot be
prevented. Reasons for modeling events as uncontrollable are process control limita-
tions, unpredictable machine breakdowns or sensor readings which are not the direct
result of a given command, just to name some examples.

Definition 2.2.1 (Supervisor [WR87]). Formally a supervisor is a function mapping the
language generated by G to Γ

S : L(G) → Γ,

where Γ =
{

γ ∈ 2Σ | γ ⊇ Σuc

}

. Γ is called the set of all control patterns. A control pattern
represents the set of events enabled by the supervisor and then contains all uncontrol-
lable events.

A supervisor follows strings s ∈ L(G) and restricts the active event set after the string s

to S (s) ∩ Σ (s) which is called the set of enabled events.

The closed-loop system of the plant G and the supervisor S is written S/G meaning
’G under supervision of S’. S/G is a DES whose generated and marked language are
defined as follows.

Definition 2.2.2 (Languages generated and marked by S/G [CL99]). The language gen-
erated by S/G is recursively defined by:

1. ε ∈ L (S/G)

2. [(s ∈ L (S/G)) and (sσ ∈ L (G)) and (σ ∈ S (s))] ⇔ [sσ ∈ L (S/G)]
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The language marked by S/G is defined by

Lm (S/G) := L (S/G) ∩ Lm (G) .

This means every sequence of symbols s that is already executed in the closed-loop
system L/G can be extended by an event σ if and only if sσ ∈ L (G) and σ is contained
in the control pattern at string s. The language marked by the closed-loop system is then
defined by language intersection of the closed-loop language with the marked language
of G.

A specification language K can be implemented by a supervisor if it is controllable w.r.t.
L (G).

Definition 2.2.3 (Controllability [WR87]). A language K ⊆ L (G) is controllable (with
respect to G) if and only if

KΣuc ∩ L (G) ⊆ K.

This means, any prefix of K which is also in L(G) followed by an uncontrollable event
must still be a prefix of K.

Definition 2.2.4 (Set of Controllable Sublanguages [WR87]). The set of controllable sub-
languages of L(G), denoted (L(G)) is defined as

C(L(G)) := {H ⊆ L(G) | HΣuc ∩ L(G) ⊆ H}.

Controllability is closed under union. As a consequence, if K1 and K2 are controllable,
then K1 ∪ K2 is controllable, too. Therefore, the union of the set of controllable sublan-
guages is also controllable. Then there must be a ”largest” element in the set of control-
lable sublanguages that includes all other controllable sublanguages. This is defined as
the supremal controllable sublanguage.

Definition 2.2.5 (Supremal Controllable Sublanguage [WR87]). Let E ⊆ L(G) be a spec-
ification language. The supremal controllable sublanguage of E with respect to L (G) is

κL(G) (E) :=
⋃

{K ∈ C (L (G)) | K ⊆ E}
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κL(G) is the union of all controllable sublanguages that agree with the specification E. A
recognizer of κL(G) (E) is a instance of a minimally restrictive supervisor for the DES G

with the specification E.

Nonblocking control requires the definition of a further property:

Definition 2.2.6 (Lm(G)-Closure [CL99]). A language K is Lm (G)-closed if

K = K ∩ Lm (G) .

This means that every string in K is prefix of a string in Lm (G).

Theorem 2.2.1 (Nonblocking Controllability Theorem [WR87]). Let G = (X, Σ, δ, x0, Xm)

be a DES with Σuc ⊆ Σ as the set of uncontrollable events. Let K ⊆ Lm (G) be a
sublanguage with K 6= ∅. A nonblocking supervisor S for G with Lm (S/G) = K and
L (S/G) = K exists iff

1. K is controllable (with respect to L (G))

2. K is Lm (G)-closed

This finally leads to the basic problem of supervisory control of DES [CL99].

Let G = (X, Σ, δ, x0, Xm) be a discrete event system with the events Σ and the uncontrol-
lable events Σuc ⊆ Σ. Let Lam ⊆ Lm (G) be the admissible marked language of G, which
is assumed to be Lm (G)-closed. A nonblocking supervisor S has to be found such that:

1. Lm (S/G) ⊆ Lam

2. Lm (S/G) is ”as large as possible”

For solving this problem, it is necessary to compute a nonblocking supervisor S that is
minimally restrictive. This is achieved by choosing S such that

L (S/G) = κL(G) (Lam) and Lm (S/G) = κL(G) (Lam)

as long as κL(G) (Lam) 6= ∅ which is the basic concept of the SCT.
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Chapter 3

Automaton Data Model

As described in Chapter 2, the supervisory control theory (SCT) uses finite automata to
model the behavior of discrete event systems. While small didactic examples with only
few states can be handled without computational support, this is not possible for most
real world DES. Especially manufacturing systems with concurrent activities introduce
complexity far beyond the scope of being modeled and processed by hand. Here soft-
ware is required to handle the computation. This chapter deals with the development
of an appropriate data model for finite automata, that fits well for the methods used
in the supervisory control theory. In Section 3.1, two basic automata data models are
introduced. These models are evaluated with commonly used SCT methods in Section
3.2.

3.1 Introduction of Abstract Automata Models

The effectiveness of a software algorithm heavily depends on the underlying data struc-
ture. At the same time the design of a data structure depends on the algorithms operat-
ing on it. Therefore, it is necessary to identify typical data access patterns in supervisory
control theory methods, to figure out a proper data model for the finite automaton de-
fined in Chapter 2. Here the problem arises that the ”optimal” data structure can only
be known after evaluating all supervisory control methods at first which is beyond the
scope of this thesis. To get a good overview what kind of data model is appropriate,

15



two different abstract automaton data models which represent the two main modeling
concepts for finite automata are introduced. The corresponding data access patterns are
investigated in the next section.

3.1.1 Linked List Model

At first, an approach which is derived from the directed graph representation of an
automaton as e.g. shown in Figure 2.1 is analyzed.The automaton is considered as a set
of states containing transitions that point to other states. The initial states and marked
states are used as starting points. In addition every state has a flag determining if the
state is marked. This results in the following abstract data types:

Automaton:

• Initial States: List of pointers to states

• Marked States: List of pointers to states

• Set of Events

State:

• State Identifier

• Marked State (Binary)

• Transitions: Set of transitions

Transition:

• Event

• Pointer to State

These data objects build a linked list-like model of an automaton. The automaton is
accessed by its initial states or marked states which are represented by some data type
that points to state objects. Every state object has an identifier representing the name or
number of the state, a binary flag containing the marking status and a list of transition
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objects. Every transition object has an event and a pointer to a state associated with it.
In addition, the set of events is stored, as the automaton may contain events not associ-
ated with any transition. This forms a structure as shown in Figure 3.1. The automaton
consists of states pointing to each other via transition objects. It is assumed that the
pointers are bidirectional since some SCT methods may require traversing an automa-
ton backwards beginning at the marked states. States between initial and marked states
are only accessible by traversing the linked pointers. Therefore, random access of states
is impossible. The representation is similar to a double linked list that provides direct
access to both ends while random access in the middle of the list is impossible. For this
reason the stated automata data model is called a linked list automaton data model.

Figure 3.1 shows how states are linked to each other. As can be seen, the diagram
resembles the directed graph of an automaton.

3.1.2 Set Based Model

The second data model is directly deduced from the automaton given in Definition 2.1.2.
The automaton is modeled as a five tuple consisting of a state set, an event set, a set of
transitions, a set of initial states and a set of marked states:

Automaton:

• Set of States

• Set of Events

• Set of Transitions

• Set of Initial States

• Set of Marked States

State / Initial State / Marked State: State Identifier

Event: Event Identifier

Transition: State - Event - State

17



Figure 3.1: Linked states in the linked list automaton data model
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In the context of the abstract set automata model the term set shall be specified as an
amount of states, events or transitions whereas no specification is given for the sorting
order. The set allows to determine if a specific state, event or transition is contained and
allows retrieving all included elements in an unspecified order. Like in the algebraic set
definition it may not contain duplicate elements in contrast to a so called multiset. Figure
3.2 shows the example automaton of Figure 2.1 in the context of a set based model.

Figure 3.2: A set based model holds the example automaton of Figure 2.1.

3.2 Evaluation of Data Models

In this section, the abstract automaton data models introduced in the previous section
are evaluated with methods used in DES modeling. The following three representative
methods are investigated:

Parallel Composition: The main application of parallel composition is merging inter-
acting components of a plant. In the RW theory all parts of a DES have to be
combined to one monolithic automaton by parallel composition. This may lead to
the state space explosion problem stated in Chapter 1. The method is similar to
computation of the supremal controllable sublanguage used for supervisor com-
putation. Both follow the transitions of two given automata in parallel beginning
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at their respective initial states while the pairs of parallel states build a new au-
tomaton.

Language Projection: The language projection is used in different decentralized [YL00,
dQC00] and hierarchical [Sch05b, Led02, CC02] approaches.

Subset Construction: Conversion of a nondeterministic to a deterministic automaton
is done by subset construction. Such a conversion is often required after executing
other algorithms that most likely result in a nondeterministic automaton, e.g. lan-
guage projection. Subset construction, along with state space minimization, is an
algorithm that builds a new automaton by constructing power sets of the existing
stateset. The order of memory complexitiy in subset construction is exponential in
the number of states.

For each method the definition and an abstract algorithm is stated. A summary of gen-
eral data access patterns and a short discussion of possible problems with each of the
two introduced data models follows.

The tests of the automaton models with these methods show their general qualifica-
tion for computation in SCT. While this is the most important criterion for choosing an
automaton model, the raw performance of a model is important too. Therefore a perfor-
mance evaluation of the models, data access patterns that typically occur in the iteration
loops of SCT algorithms is included following up the discussion of the methods.

At first the automaton models are evaluated with the three stated algorithms.

3.2.1 Parallel Composition Method

Definition 3.2.1 (Parallel Composition). The parallel composition of two finite automata
G1 = (X1, Σ1, δ1, X0,1, Xm,1) and G2 = (X2, Σ2,δ2,X0,2, Xm,2) is defined as the following
automaton:

G1 ‖ G2 :=
(

X1‖2, Σ1 ∪ Σ2, δ1‖2, X0,1 × X0,2, Xm,1‖2

)

where
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• X1‖2 := {(x1 ∈ X1, x2 ∈ X2) | ∃ (x0,1, x0,2) ∈ X0,1 × X0,2, ∃s ∈ (Σ1 ∪ Σ2)
∗

such that δ1‖2 ((x0,1, x0,2) , s) = (x1, x2)
}

• δ1‖2 ((x0,1, x0,2) , σ) :=























(δ1 (x1, σ) , δ2 (x2, σ)) if σ ∈ Λ1 (x1) ∩ Λ (x2)

(δ1 (x1, σ) , x2) if σ ∈ Λ1 (x1) \ Σ2

(x1, δ2 (x2, σ)) if σ ∈ Λ2 (x2) \ Σ1

undefined otherwise

• Xm,1‖2 :=
{

(x1, x2) ∈ X1‖2 | x1 ∈ Xm,1 ∧ x2 ∈ Xm,2

}

An example is shown by the parallel composition of the two automata

• G1 = ({1, 2, 3} , {α, β} , {(1, α, 2) , (2, α, 3) , (3, β, 1)} , {1} , {1}) and

• G2 = ({1, 2} , {β, γ} , {(1, γ, 2) , (2, β, 1)} , {1} , {1})

in figure 3.3.

Figure 3.3: Parallel composition of automata G1 and G2

A basic algorithm that implements the parallel composition is given as follows.

Abstract Algorithm (Parallel Composition). Input: Finite automata
G1 = (X1, Σ1, δ1, X0,1, Xm,1) and G2 = (X2, Σ2,δ2,X0,2, Xm,2).

/* Starting at the initial state pairs, events in the shared alphabet Σshared = Σ1 ∩ Σ2 are
executed in parallel, while all other events Σ − Σshared are executed asynchronously. */
compute the set of initial states X0,1 × X0,2

/* Fill the waiting list. */
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Xwaiting := {(x1, x2, (x1, x2)) | (x1, x2) ∈ X0,1 × X0,2}, X1‖2 = ∅, Xm,1‖2 = ∅

/* The execution of events follows the scheme: */
while Xwaiting 6= ∅ do

take a tuple (x1, x2, (x1, x2)) ∈ Xwaiting and remove
for all σ ∈ (Λ (x1) ∪ Λ (x2)) do

for all x1‖2 ∈ δ1‖2 ((x1, x2) , σ)! do
if x1‖2 /∈ X1‖2 then

X1‖2 = X1‖2 ∪
{

x1‖2

}

Xwaiting = Xwaiting ∪
{(

δ1 (x1, σ) , δ2 (x2, σ) , x1‖2

)}

end if
add transition

(

(x1, x2) , σ, x1‖2

)

to G1‖2

end for
end for
if x1 ∈ Xm,1 ∧ x2 ∈ Xm,2 then

Xm,1‖2 = Xm,1‖2 ∪ {(x1, x2)}

end if
end while

At first the initial state pairs are computed and put in the waiting set along with their re-
spective states in G1 and G2. Then transitions in both automata are followed by execut-
ing shared events synchronously and unshared events asynchronously. This is carried
out by retrieving a tuple of (x1, x2, (x1, x2)) from the set of waiting states Xwaiting and
executing the transitions that link from the states in G1 and G2. Each time a new state
pair is created it is put on the waiting list. Each state pair (x1, x2) that was put from the
waiting set is marked if both states are marked in G1 and G2. The algorithm terminates
when the waiting list is empty.

The symbolic notation of the algorithm operates on the automaton in Definition 2.1.2.
A software implementation introduces access patterns to the automaton data model in
place of the symbolic operations. Aside from primitive operations, the following set of
data access patterns has to be taken into account for the concrete implementation of an
automaton data model.

Data Access Patterns

• Direct access to the initial states is required to start the algorithm.
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• A set of waiting states must be maintained. It contains tuples constisting of three
states (or pointers to states) x1 ∈ G1, x2 ∈ G2 and (x1, x2) ∈ G1‖2. The ordering of
the set has no effect.

• Set inclusion tests for either Σshared or Σ − Σshared are required for determining if
an event is shared or not.

• For the determination of (Λ (x1) ∪ Λ (x2)) the transitions of a given state have to be
accessed. The order of the transitions is irrelevant at this point.

• Computing δ1‖2 ((x1, x2) , σ) requires determining if σ ∈ Λ1 (x1) ∩ Λ (x2), σ ∈

Λ1 (x1) \ Σ2 or σ ∈ Λ2 (x2) \ Σ1. For fast set inclusion test, the transitions of a
given state must be ordered by their respective events.

• New transitions
(

(x1, x2) , σ, δ1‖2 ((x1, x2) , σ)
)

must be linked properly within G1‖2

. Therefore it must be determined if the states δ1‖2 ((x1, x2) , σ) have already been
created, which may require a search through the complete automaton G1‖2.

• The marked status of each new state (x1, x2) ∈ G1‖2 must be checked for each pair
x1 ∈ G1, x2 ∈ G2 that builds a new state in G1‖2.

Now the set of data access patters can be evaluated in the data models introduced in
Section 3.1.

Linked List Automaton Model

At first the linked list automaton model in Section 3.1.1 is evaluated:

• The inital states are directly accessible for starting the algorithm.

• The set of waiting states Xwaiting can be maintained efficiently by using three stacks
with pointers to states. The elements on top of the respective stacks build the tuple
of x1 ∈ G1, x2 ∈ G2 and (x1, x2) ∈ G1‖2.

• The set of shared / unshared events can be directly computed as every automaton
provides direct access to its alphabet.
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• Transitions for a given state can be directly retrieved in the respective state object.
The transitions must be ordered by their events.

• When linking new transitions
(

(x1, x2) , σ, δ1‖2 ((x1, x2) , σ)
)

in G1‖2, the pointer to
the state objects for δ1‖2 ((x1, x2) , σ) is not known at first by nature of the linked
structure. Here an additional supporting data structure that maps pairs (x1, x2) ∈

X1‖2 to state pointers is required. The map must be sorted to minimize search
time. Without such an additional map G1‖2 must be searched for δ ((x1, x2) , σ).
The search may require traversing the complete automaton and should be avoided
because of that.

• Checking the marking status of newly created states in G1‖2 is fast, since the re-
spective pair of states x1 ∈ G1, x2 ∈ G2 directly holds its marking status.

Set Based Automaton Model

The set based data model, introduced in Section 3.1.2, requires different access patterns:

• The initial states are directly accessible for starting the algorithm.

• As in the linked list model the set of waiting states Xwaiting can be maintained
efficiently, e.g. by using three stacks with state identifiers. The elements on top of
the stack build the tuple of x1 ∈ G1, x2 ∈ G2 and (x1, x2) ∈ G1‖2.

• Like the linked list model the set based model provides direct access to the set of
events for computing Σshared or Σ − Σshared.

• For the retrieval of the transitions for a given state, the set of transitions must have
an order. The order must provide fast access for finding transitions that contain
a specific predecessor state. In addition, an ordering of the transitions by their
respective events per state is required.

• When new transitions are created in G1‖2, the state identifier of the target state
δ1‖2 ((x1, x2) , σ) may not be known at first. If a state identifier scheme is used that
has no direct mapping from a pair x1 ∈ G1, x2 ∈ G2 to the corresponding state
identifier of (x1, x2) ∈ G1‖2, an additional sorted data structure that provides such
a map is required.
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• Checking the marking status of newly created states in G1‖2 is straight forward by
querying the set of marked states in G1 and G2. For a fast inclusion test, the set of
marked states must have an order.

Model Comparison

The parallel composition has shown that the specification of both basic models has to be
extended for ordered transitions. In the linked list model transitions have to be ordered
locally at each state by their events. In the set based model a global order of transitions
predecessor states first and events second is required. With this extended specification,
both models fulfill the requirements of the parallel composition. Both need addition-
al data structures for building the transition relation of G1‖2 . A further requirement
is a sorted set of marked states for fast set inclusion tests. As conclusion, there is no
preference for one of the models by the parallel composition method.

3.2.2 Language Projection Method

Definition 3.2.2 (Natural Projection [Won04]). For an alphabet Σ0 ⊆ Σ the natural pro-
jection p0 : Σ∗ → Σ∗

0 is recursively defined as follows:

• p0 (ε) := ε

• p0 (σ) :=

{

ε if σ /∈ Σ

σ if σ ∈ Σ0

• p0 (sσ) := p0 (s) p0 (σ) for s ∈ Σ∗, σ ∈ Σ

The natural projection po (L) removes all symbols σ /∈ Σ0 from strings in the language
L by concatenation of the remaining fragments that contain only symbols σ ∈ Σ0. For
convenience, the natural projection is simply denoted projection.

While the projection of a language is straightforward, projecting the generated language
of an automaton by manipulation of the automaton itself is not trivial. An abstract
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algorithm that hides implementation details is stated as follows1.

Abstract Algorithm (Projection). Given a finite automaton G = (X, Σ, δ, X0, Xm) and a
projection alphabet Σ0 ⊆ Σ.

/* The method is initialized by putting all initial states in the set of waiting states */
Xwaiting = X0

/* Starting at the initial states all reachable states are explored for transition paths with events
σ ∈ Σ0 */
while Xwaiting 6= ∅ do

take a state x from Xwaiting

put x in Xpath

while Xpath 6= ∅ do
take a xp from Xpath

for all σ ∈ Λ (xp) do
if σ ∈ Σ0 then

δ (x, σ) := δ (xp, σ)

put state δ (xp, σ) in Xwaiting

else
put successor state δ (xp, σ) in Xpath

if δ (xp, σ) ∈ Xm then
Xm = Xm ∪ {x}

end if
end if

end for
end while
for all σ ∈ Λ (x) do

if σ /∈ Σ0 then
remove the transition from δ

end if
end for

end while

Initiallization is done by filling the waiting set with the set of initial states. Then, the
reachable part of the automaton is explored in the following manner. After retrieving
the next state from the waiting set, transition paths are executed until they end in an
event contained in Σ0. This may also be the first event in a path. While executing a

1Note that this algorithm creates a nondeterministic automaton. The Deterministic method which is
required for converting a projected deterministic automaton back into a deterministic one is introduced
in Section 3.2.3.
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transition path, transitions with projected events that link from states in the path, are
relinked at the starting state. Previously unexplored states along the path that con-
tain transitions with projected events are added to the waiting list. If a marked state
is reached by such a transition path the starting state is marked. After transition paths
are explored for a state from the waiting list, all transitions that link from this state and
have an event not in Σ0 are removed from the transition relation.

Figure 3.4 shows the automaton

G = ({1, 2, 3} , {α, β, γ, µ} , {(1, α, 2) , (2, β, 1) , (2, µ, 3) , (3, γ, 1)} , {1} , {1})

being projected to the alphabet Σproj = {α, β, µ}. This results in the projected automaton
Gproj where Lm (Gproj) = p0 (Lm (G)) and L (Gproj) = p0 (L (G)).

Figure 3.4: Projection of an automaton G to Gproj over the alphabet Σproj

As in the previous section, the abstract algorithm is evaluated for data access patterns
that appear in a software implementation.

Data Access Patterns

• Direct access to the set of initial states is required.

• A simple unordered set of waiting states Xwaiting and locally unprocessed states
Xpath is required. For example both sets can be maintained by a stack.

• Set inclusion tests are required to determine whether an event σ is contained in Σ0

or not. Therefore Σ0 must be sorted.

• Adding transitions by the statement δ (x, σ) := δ (xp, σ) is trivial. This is in contrast
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to parallel composition, where adding transitions to the new automaton requires
traversing the automaton if no helper data structures are used.

• When deleting transitions, it has to be ensured that all states are still accessible in
the data model after the deletion.

These data access patterns are investigated in context with the linked list automaton
model and the set based automaton model.

Linked List Automaton Model

• Direct access to the initial states is given.

• Both sets Xwaiting and Xpath have to be implemented as sets that hold pointers to
states. Then fast access to the next state xp is given.

• A supporting data structure is required for storing Σ0 as a sorted set of events.

• Adding a transition δ (x, σ) := δ (xp, σ) simply is done by adding a new transition
object at state x that points to state δ (xp, σ) with event σ.

• Deleting transitions may have the effect that states and transitions linking from
that states have no more link path to either an initial state and a marked state.
These states and transitions are then lost in memory and cannot be accessed any-
more. Although, this does not affect the projected language of the automaton, it
can cause memory leaks in an implementation.

Set Based Automaton Model

• As in the linked list model, the initial states can be directly accessed to invoke the
algorithm.

• Xwaiting and Xpath can be implemented by a data structure that can hold an un-
ordered set of state identifiers.

• A supporting data structure is required for storing Σ0 as a sorted set of events.

• Adding transitions by δ (x, σ) := δ (xp, σ) is straightforward.
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• Deleting transitions is trivial. It should be noted that ”loosing” states by removing
all transitions linking to them is not possible at all with this data model, because
the whole transition relation is kept as single set.

The evaluations of the data models concludes in the model comparison.

Model Comparison

The projection algorithm has shown an important weakness in the linked list model.
Without extensions, it cannot hold states that have no link path to either an initial state
or a marked state. Although such automata are not covered by regular language theory,
they may occur in the implementation of automata algorithms. In contrast, the set based
model does not have this problem. It is well suited for the projection algorithm. For
both models, a supporting data structure is required for doing set inclusion tests with
the projection alphabet.

As a conclusion, both models can execute the algorithm, but the linked list model may
lose states and transitions (that are not required to generate the projected language) in
memory. It should be noted, that this is just one version of many possible language
projection algorithms.

3.2.3 Data Model Evaluation by Subset Construction

The conversion of a nondeterministic finite automaton into a deterministic finite au-
tomaton is an important topic in automata theory. The method for the conversion is
called subset construction. It is heavily used in [Sch05b] and other approaches.

Definition 3.2.3 (Subset Construction [HU79]). For a given nondeterministic finite
automaton Gnd = (Xnd, Σ, δnd, X0,nd, Xm,nd) a deterministic finite automaton Gd =

(Xd, Σ, δd, x0,d, Xm,d) can be constructed such that Lm (Gnd) = Lm (Gd) where

• Xd :=
{

S ⊆ 2Xnd | S = x0,d ∨ ∃s ∈ Σ∗ such that S = δd (x0,d, s)
}

,
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• δd (S, σ) =
⋃

xnd∈S δnd (xnd, σ) where S ⊆ 2Xnd ,

• x0,d = X0,nd,

• Xm,d = {S ∈ Xd | ∃xnd ∈ S such that xnd ∈ Xm,nd} .

This definition results in the following algorithm.

Abstract Algorithm (Subset Construction). [Les95]: Given a nondeterministic finite
state automaton Gnd = (Xnd, Σ, δnd, X0,nd, Xm,nd).

/* Initialization is done by defining the set of initial states of the nondeterministic automaton
as the initial state of the deterministic automaton */
S1 := X0,nd, Xd := {S1}, x0,d := S1

last = 1

for i = 1; i ≤ last; i = i + 1 do
for all σ ∈ Σ do

/* Create empty temporary set */
S := ∅

for all x ∈ Si do
S = S ∪ {δnd (x, σ)} if δnd (x, σ)!

end for
if S 6= ∅ then

if ∃Sk ∈ Xd, 1 ≤ k ≤ last such that S = Sk then
Create transition δd (Si, σ) := Sk

else
last = last + 1

Slast := S, Xd = Xd ∪ {Slast}

Create transition δd (Si, σ) := Slast

end if
end if

end for
if ∃x ∈ Si | x ∈ Xm,nd then

Xm,d = Xm,d + {Si}

end if
end for

The new deterministic automaton is built of the nondetermistic one by constructing
subsets (power sets) of Xnd which are linked by transitions. Initialization is done by
putting the set of initial states of the deterministic automaton into a subset. From there
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on a new subset is constructed every time there is an event that causes at least one
transition (with this event) from the subset which does not link back into the subset
again. Then a new subset is created of the set of successor states of these transitions. This
way, all transitions that link from a subset and contain the same event are mapped to a
single transition in the deterministic automaton. Marking of states in the deterministic
automaton is then done by marking every subset that contains at least one state which
is marked in the nondeterministic automaton.

Again the significant data access patterns that occur in a software implementation are
identified for both automata models introduced before.

Data access patterns

Unlike the evaluation of parallel composition and language projection, the evaluation of
subset construction is based on existing work. In [Les95] efficient approaches to subset
construction are developed. This includes both optimized algorithms and optimized
data structures. Different algorithm implementations are suggested for different orders
of the number of states (among other data model independent parameters that will not
be covered here for the sake of simplicity). As large numbers of states are common in
RW theory, only the relevant results for this case are presented here.

The algorithm holds two main areas in which most of the computational time is spent:

• The first is in the transition loop, where transitions containing the current event
are searched at every state in the subset. This seems optimizable as most likely the
transitions at a state will contain only few events compared to the overall alpha-
bet. A multiway merge algorithm that solves this problem is available in [Les95],
however, the algorithm is not covered here as its implementation is independent
of a specific automaton data model.

• The second area is the test for set existence and equality in Xd after a new subset
was created. Here additional data structures are required to build the determinis-
tic automaton:

– States in the resulting deterministic generator consist of power sets of the
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states of the nondeterministic one (Xd ⊆ 2Xnd). This requires a set data struc-
ture to hold a set of states. [Les95] suggests implementing subsets as heaps
[Knu98]. A heap is an array-based implementation of a special type of bi-
nary search tree, that is complete up to the lowest level which may not be
completely filled.

– According to [Les95], for every subset a set signature is computed that sup-
ports set inclusion tests in Xd. The signature for a power set may not be
unique but in set comparisons it must limit the number of possible matches
to few sets compared to the overall number. Finding a good algorithm for
computation of a signature for a power set heavily depends on the exact data
type stored in the set and is not covered at this point.

– Comparing power sets requires a hash table to look up all the sets matching
a given signature. Then Xd is implemented as an array of subsets with an as-
sociated hash table for set inclusion tests. It can also be directly implemented
as a hashed set. If an array is used to store the subsets the array index can be
used directly to implement the Index i used in the abstract algorithm.

In combination with the proposed data structures, the algorithm introduces the follow-
ing data access patterns:

• Initialization is done by creating a subset that contains all initial states of the non-
deterministic generator. The subset is hashed by its set signature and put into
Xd.

• For every newly constructed deterministic state an iteration over all events in Σ is
required.

• For every event in the alphabet iteration at first an empty power set is created.
Then all transitions that contain the current event are followed by evaluating every
state in the power set for transitions with the event from that state. Pointers to the
successor states are then stored in the new power set.

• If the newly created power set is still empty, processing stops at this point and
continues with the next event in Σ.
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• For nonempty power sets it has to be determined if it is already contained in Xd:

– Compute the set signature for the new set.

– Look up the matching subsets in the hash table.

– If one of the subsets is equal to the new set use the existing one for linking the
transition in the next step. In the other case add the new subset to the array
of subsets, store its array index in the hash table and mark the set as waiting.

• Finally, a transition in the deterministic automaton is introduced by linking the
subset of the deterministic predecessor state with the subset of the deterministic
successor state via the current event in the event loop.

• A subset in Xd has to be marked if one of its nondeterministic states is marked.

There exist many ways to build the new deterministic automaton in the original data
model. The most convenient idea seems to be constructing the deterministic automaton
on the fly by linking each new subset in Xd with a newly created state in the determin-
istic automaton. Transitions and marked states are then established in the usual way
while the subsets are only used for constructing new deterministic states and set inclu-
sion tests. It should be noted, that this is only possible because states in the deterministic
automaton (in the original data model) are always accessed through their correspond-
ing subsets and never the other way. So only unidirectional links from the subsets to
their associated states are required.

At next these data access patterns are evaluated with both automata models.

Linked List Automaton Model

• Starting the algorithm is straight forward by creating a power set containing point-
ers to the set of initial states of the nondeterministic automaton. In the new deter-
ministic automaton a initial state is created and a link established from the power
set to the state. The set is put in the waiting list.

• While in the algorithm the deterministic automaton consists of subsets, that are
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linked by transitions and can be marked, the way of constructing a deterministic
linked-list automaton is different. Here a new linked list automaton (with the
natural state objects the model provides) is constructed on the fly.

Processing a waiting power set causes the following data access patterns:

• Iterating over the alphabet of the automaton is straightforward.

• For every event in the alphabet iteration, at first an empty power set is created.
Then for each event in the alphabet iteration all states in the set are evaluated for
transitions that contain the current event. Therefore a sorting of the transitions
by their events is required. For each transition that matches the current event, a
pointer to its target state is stored in the newly created power set. This is simply
done by copying the state pointer, held by each transition.

– If the newly created power set is still empty, processing stops at this point
and continues with the next event in Σ.

– For a nonempty power set it has to be determined if it is already contained
in Xd. This is done by a set signature test. If subsets in Xd have the same
signature, these subsets have to be compared against the new power set. If no
matching set is found, a new state is created in the deterministic automaton
and a link established between the subset and the state.

– At last the transition has to be added in δd by linking the predecessor power
set and the successor power set with the respective event. This is directly
done by creating a transition between the corresponding state objects both
subsets respectively point to.

• For each new subset in Xd, it has to be determined, if at least one of its nondeter-
ministic states is marked. For this all the states where the subset entries point to
have to be evaluated for their respective marking flag. If a nondeterministic state
is marked, the state in the deterministic automaton is marked.
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Set Based Automaton Model

• Algorithm initialization is simply done by copying the set of initial states of the
deterministic automaton as a new power set into Xd. A new state is added to
the set of states and the set of initial states of the deterministic automaton. A
link between the power set and the state identifier of the created state has to be
established. The new power set is added to the waiting list. From there on the
waiting list is processed subset by subset.

Processing a subset includes the following data access patterns:

• Iteration over the alphabet is directly possible.

• A new empty power set is created for the current event. Then all transitions con-
taining that event are followed for every state in the set. This is done by an itera-
tion over the states in the (predecessor) subset. For each state the transitions from
the state with the current event have to be searched in the set of transitions. This
requires the set of transitions being sorted both by state and by event. For each
matching transition the successor state is put into the new power set.

• For nonempty power sets, the procedure is nearly the same as in the linked list
model. It has to be determined if the new set is equal to an existing subset in Xd.
If the new set is unique, it is put into Xd and a new state identifier is created in the
set of states of the deterministic automaton. Then a link is established between the
subset and the state identifier.

• At last the transition in the deterministic automaton is added by adding a new
transition object to the set of transitions. The new transition object contains the
state identifier of the predecessor state, the event and the state identifier of the
successor state.

• Every subset has to be tested for marking states to determine the marked status
of its corresponding deterministic state. Therefore, the set of marked states of the
nondeterministic automaton must be sorted.
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Model Comparison

The evaluation of both data models has shown that the algorithmic implementation is
straightforward for both data models up to the set inclusion tests for Xd with newly
created power sets. Aside from small implementation details, namely the storage of
either pointers to states or state identifiers in subsets, data access patterns for comparing
new subsets with existing ones in Xd are identical for both automaton models. Again the
transitions in the linked list automaton model were required to be sorted at each state
while the set based model required the set of transitions being sorted by predecessor
state and event.

The subset construction method concludes the data model evaluation by means of algo-
rithms. At next the computational complexity of typical operations is investigated for
both models.

3.2.4 Computational Complexity of Important Data Access Patterns

In this section the computational complexity of the most important data access patterns
in the above algorithms is evaluated.

It is assumed that a sorted set is implemented as a balanced binary search tree [AHU+83,
Knu98] with elements additionally being linked in order. In such a search tree finding
an element never takes more than O (log n) steps, where n is the number of entries in
the set. There may be other implementations for sorted sets that have a better average
search complexity, but as most standard libraries of modern programming languages
provide at least one implementation of a balanced binary search tree, this sorted set
type is used for evaluation.

The previously analyzed algorithms have shown that the transitions have to be sorted.
For the linked list model it is assumed, that transitions at each state are sorted in the
order of their events first and successor states next. For the set based model an ordering
by predecessor states, events and successor states of the set of transitions is assumed. In
addition an ordering of the set of marked states is assumed for the set based model.
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For a given automaton G = (X, Σ, δ, X0, Xm) the number of states is denoted x, the
number of transitions t and the number of (local) transitions that link from a given state
tl.

As the evaluation of the three methods above has shown, the most important access pat-
terns deal with accessing the transition relation of an automaton. Therefore the typical
transition access operations are evaluated. In addition the test for the marking status of
a state is investigated.

Find all transitions that link from a given state

• Linked List Model

– For a given state the transitions that link from this state can be directly ac-
cessed. Therefore the complexity for finding the first transition is O (1). Ac-
cessing the next transition at the state requires one step. So accessing all tran-
sitions linking from a state has the complexity O (tL).

• Set Based Model

– Searching for the first transition that matches a given state causes a maxi-
mum of log t steps. Therefore the complexity is O (log t) for finding the first
element. If more than one transition links from the state accessing the next
transition causes one step. So accessing all transitions linking from the state
is of complexity O (log t + tl) where log t + tl < t.

Find all transitions that link from a given state and contain a specific event

• Linked List Model

– For a given state, the transitions linking from that state can be directly ac-
cessed. So a search of order O (log tl) is required. If the state holds more than
one transition with the event, accessing the next transition requires one step.
Let e be the number of transitions containing the event. Then the complexity
of accessing all matching transitions is O (log tl + e) where log tl + e < tl.

37



• Set Based Model

– The search for the first element that matches the predecessor state and the
event requires a maximum of log t. All further transitions that hold the state
and the event are incrementally accessible with one step each. Let e be the
number of transitions containing the event. So the overall complexity is
O (log t + e) where log t + e < t.

Find all transitions that link to a given state

Let tr be the number of transitions that link to a given state.

• Linked List Model

– According to the model definition, pointers to states are implemented bidi-
rectional. Thus, the first transition linking to a state is directly accessible with
O (1). Accessing the next transition linking to the state requires one step. This
results in the overall complexity O (tr).

• Set Based Model

– The transition relation is sorted in the order predecessor state - event - suc-
cessor state. From this it follows that finding all transitions linking to a state
always requires t steps. The complexity then is O (t). This suggests a reorder-
ing of the transition relation by successor state, event and predecessor state if
this access pattern required several times in an algorithm. Then the complex-
ity for finding all matching transitions is O (log t + e) as stated before.

Find all transitions that link to a given state and contain a specific event

Let tr be the number of transitions that link to a given state.

• Linked List Model

– Because of the bidirectional implementation of the state pointers in transi-
tions, direct access to the transitions is possible. Then finding all transitions
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that contain the event requires log tr steps. Therefore the order of complexity
is O (log tr) for finding all matching transitions.

• Set Based Model

– The complexity is exactly the same as in the case of finding all transitions that
link to a given state. Again a complete search through the transition relation
with complexity O (t) is required here.

Marking Status Test

Testing the marking status of a given state is an important operation required in nearly
all SCT algorithms.

• Linked List Model

– Testing the marked status of a given state simply requires evaluating the
marking flag at the state object and therefore is of order O (1).

• Set Based Model

– To test a given state for its marking status a search in the sorted set of marked
states is required. Let xm be the number of marked states in the automaton.
Then the complexity for determining the marked status is O (log xm).

Model Comparison

The evaluation has shown, that the linked list model takes big advantage of its tran-
sitions being directly accessible at each state. Therefore algorithms that traverse the
linked transition structure of an automaton will be faster with a linked list automaton
model than with a set based model. The marking status test for a state has also shown
the linked list model requires less computational steps here.

However, it is important to note, that SCT algorithms often strongly depend on the
efficiency of supporting data structures. For this reason the complexity evaluation of
the access patterns can only be seen as a synthetical benchmark for the raw performance
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of the models. Therefore the results of the performance evaluation may only be used as
an additional criterion in relation to the evaluation by algorithms.

3.2.5 Conclusion

Two basic automata data models have been evaluated with three methods commonly
used in supervisory control theory. The evaluation started with the parallel composition
method followed by the language projection method and ended with the subset con-
struction. For every method an abstract algorithm was presented. Then the algorithm
was used to explore the data access patterns that occur in a software implementation
of the algorithm. These data access patterns were finally evaluated for both data mod-
els, followed by a short conclusion for each method. In addition important data access
patterns were analyzed for their computational complexity with both models.

While the overall evaluation by SCT methods has shown that all three algorithms can be
implemented with both data models, the evaluation of the projection method revealed
an important weakness of the linked list model. The linked list model is unable to
handle a fragmented transition relation or states that have no transition link to either the
initial states or the marked states. Such an automaton cannot be generated by marking
a given language, but may emerge in automata algorithms. Therefore the evaluation
by algorithms has given a preference for the less restrictive set based automaton data
model. In contrast, the complexity evaluation of data access patters has shown, that the
linked list model requires less computational steps in important access patterns that can
be often found in loops of SCT algorithms.

The evaluation has further shown that a more detailed specification is required for both
automata models to fulfill the requirements of computation in SCT. For the linked list
model, a sorting of the transitions by their respective events is required. This holds as
well for the set based model, where the set of transitions must be sorted by predecessor
state, events and maybe by successor state.

As a conclusion the linked list model provides faster computational performance but is
restricted to a linked state structure while the set based model has no restrictions at all
but provides less computational performance.
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A different approach for the modelling of finite automata in software is using binary
decision diagrams (BDDs). This is presented in [ZW01]. Binary decision diagrams en-
able a memory saving representation of finite automata. However, this is still an action
of research, since only few supervisory control methods are known to be implemented
by using BDDs. Therefore the implementation of algorithms for SCT using BDDs is not
covered in this thesis.

3.3 Basic Automaton Implementation

The evaluation of the linked list automaton model and the set based automaton model
has shown a preference for the set based model in terms of flexibility. As the main goal
of this thesis is to provide a software library for RW control theory, that can be easily
extended to other theoretical approaches, the abstract set based model is used as the
basis for specifying the real implementation of an automaton.

At first the specification of the set based automaton model is developed in Section 3.3.1
by discussing important aspects regarding the implementation of event identifers and
state identifers. To keep the implementation of the automaton class and the algorithms
that operate on this class independent of the details of a specific programming lan-
guage, abstract data types (ADT) are introduced in Section 3.3.2. These abstract data
types are used in subsequent chapters when specifying the algorithms for all methods
covered in the thesis. Section 3.3.3 then finally introduces the implementation of the
object orientated automaton class along with its basic functions.

3.3.1 Automaton Model Specification

Several important aspects of implementing an automaton software model that is both
well suited for computation and user friendly are discussed. In this section, the results
the specification of the data model is given.

41



Event Identifiers and State Identifiers

At first the definition of the event identifiers and the state identifier data types, used
in the abstract model is required for the real implementation. Both event identifiers
and state identifier data types must be able to hold different entries in the order of
millions. For fast set inclusion tests, comparing two identifiers should be an operation
that requires as less computational steps as possible. Both requirements are very well
fulfilled by using the natural integer data type of the used computer architecture for the
representation of state and event identifiers. The natural integer data type of a computer
architecture is usually specified by the data type int.

As DES usually are modelled by more than one automaton, for events the assigned
numbers must be consistent in all automata, that share the events. This requires that a
modelled event must be uniquely numbered within all automata sharing the event. In
contrast state numbers have no relation between different automata, as the generated
language of automata is independent of any state identifiers. So integer state numbers
must only be unique within an automaton.

Such a representation of states and events by integer numbers is not very user friendly.
Especially when modelling real world DES it is required to know, which real world
events correspond to an event number in the model and what is the meaning of a state
number in the real world system. Therefore, a mapping between symbolic names and
integer numbers is required for both events and states. This is discussed at next.

Symbolic Event Names

If several automata operate on shared events, the set of shared events will be called
an event domain. If an event is added to the alphabet of an automaton and the event
is already known in the domain, the matching event number must be added to the
alphabet of the automaton. From the user input, an event most likely will be added by
a symbolic name, that corresponds to a specific integer number. Then the number of the
event is not known at first because the automaton does not have any information about
mappings between symbolic event names and event numbers.
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This problem is solved by an entity outside the automata that assigns integer numbers
to symbolic names and looks up the numerical index of a symbolic event name for all
automata. The properties of such an entity are stated as follows:

• Each time a new event is added to any automaton alphabet in the same event do-
main, a new unique integer index is assigned to the event. This can be implement-
ed by a counter initialized with 0 that is incremented each time a event is added
where the incremented value is assigned as the integer number of the event.

• The entity holds a mapping of event numbers to the symbolic names of the events.
For convenience a mapping of symbolic event names to the respective integer
numbers can be provided to accelerate the number lookup for a given event sym-
bol. Providing such a reverse mapping is uncritical for memory usage, as the
number of events is usually small compared to the number of states or transitions
in an automaton.

• Symbolic event names have to be unique.

• When an event is deleted from the alphabet of an automaton, it is not removed
from the entity.

Such an entity that provides unique event indices with maps for looking up event num-
bers by symbolic event names as well as looking up symbolic event names by event
numbers is denoted an eventsymboltable.

Symbolic State Names

Analogous to event numbers, states may also be assigned symbolic names. By nature
of the state identifiers, symbolic state names must only be unique within an automaton,
while several automata may contain states with different state numbers but sharing the
same symbolic name.

Here, a possible performance problem emerges from the execution of algorithms that
construct a new automaton input from existing automata. As an example, the par-
allel composition method builds a new automaton, where each state in the resulting
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automaton represents a state in each of the two input automata. If the symbolic state
names in the resulting automaton should represent the symbolic state names in the in-
put automata, then for each state in the new automaton a string operation is required
that constructs a symbolic state name the corresponding two state names in the input
automata. This slows down the computation process and increases memory usage. An-
other example for the problem is subset construction, where states in the deterministic
automaton consist of subsets of states of the nondeterministic automaton. So symbolic
state names in the deterministic automaton must contain the names of all the states in
their corresponding subset of nondeterministic states.

A solution for this problem, that addresses the decrease of computational performance
as well as the increasing memory usage is difficult to find, as there is no direct map-
ping of a integer state number in the output automaton to the integer state numbers
in the input automata. However, several approaches are possible to solve the problem
partially:

• Symbolic state names for the resulting automaton are computed depending on the
size of the input automata. The size can be specified e.g. by the number of states
or transitions.

• Each implementation of an algorithm that constructs a new automaton has a bi-
nary parameter that turns on the computation of state names in the resulting au-
tomaton. This leaves the decision of computing symbolic state names to the user.
Also the automaton model may have such a binary flag. Then, if one of the input
automata of an algorithm has the flag set to not compute state names, this holds
for the constructed automaton, too.

• Some algorithms allow computing symbolic names at the end of the algorithm
without any performance tradeoffs. This is possible for every algorithm that re-
quires holding a data structure, that maps states in the new automaton to states in
the input automata until the algorithm finishes. Then at least the computational
performance of the algorithm is not decreased if state name computation is not
requested.

• Additional data structures can be used to store mappings of state numbers in new
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automata to state numbers in input automata. Then the symbolic state name of
an automaton can be computed on demand. This also has the advantage, that the
formatting of the symbolic state name string can be adjusted on request, which
may be an interesting feature in a graphical user interface. Also this enables to
rename states in the new automata that are constructed by an algorithm, while
still being able to resolve the corresponding states in the input automata of the
algorithm. The problem here consists in developing a data structure that can hold
state mappings for different algorithms.

All approaches have in common that they do not really solve the problem. As a con-
clusion the best solution seems to be a combination of the last three approaches by
providing additional data structures to store state mappings for the most important al-
gorithms (that create new automata) and additionally allow the direct computation of
symbolic state names in each algorithm on user demand.

Storage of Symbolic State Names

It was already shown that events require an entity outside any automaton model to
manage the relation between symbolic event names and event numbers. For states such
an extern entity is not directly required, as state numbers in different automata have no
relation to each other. To develop an appropriate specification for the storage of sym-
bolic state names, the advantages and disadvantages of storing symbolic state names
locally in each automaton are investigated.

Local storage of symbolic state names within an automaton is easy to implement. This
just requires each entry of the ordered set of states to have an additional link pointing
to a string object, that contains the symbolic name of the state. The string is empty, if
a state has no symbolic object associated. Another implementation could be to have an
additional map object in the automaton that maps state indices to symbolic names. A
map from symbolic names to state numbers should only be created when reading a file,
as a complete search through all symbolic names for finding its index is fast enough for
user interactions and holding.

Therefore, storing symbolic state names locally in an automaton is a good solution for
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directly computing state names in algorithms. This approach requires an automaton to
have an integer state index counter for assigning a unique state number when creating
a new state in the automaton.

Mapping state numbers in constructed automata to their corresponding state numbers
in the original automata then additionally requires storing a pointer to the automaton
with each with a state number, which increases memory usage. Therefore a solution
that doesn’t require accessing an automaton for looking up the symbolic name of a state
is better suited at this point.

Using additional data structures for mapping states in resulting automata to states in
input automata of an algorithm is appropriate for a software library, that is developed
for general use in different supplementary software projects. For being able to imple-
ment such additional data structures, a different approach is required for the storage
of symbolic state names. Here the mapping of state numbers to symbolic names must
be implemented outside the automaton, similar to the handling of symbolic names for
event numbers.

Therefore, a solution to handle symbolic state names by an entity located outside of
automata objects is specified as follows:

• State numbers have to be globally unique. To enforce this restriction, an integer
type counter can be used to always assign the next larger integer value to a new-
ly created state in an automaton in the event domain. The counter is initialized
with 0 and incremented any time a new state number is assigned. Each time a
new state is added to an automaton, the next available state number is requested
from the entity and associated with the state. As the highest possible value of an
unsigned integer on a 32bit computer architecture is 4294967296, there are enough
free indices to assign1.

• For storing symbolic state names, a mapping of integer numbers to symbolic state
names is required. The same name may be associated with different state num-
bers, as long as the numbers correspond to states in different automata. A search
for the number of a symbolic name is done by a complete search through the map

1For very special applications, the integer range may not be large enough. Then there is always the
option to choose a integer type of double int length.
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with restricting the result to state numbers in the respective automaton. This is
fast enough for user interactions in any case. An additional mapping of symbolic
names to numbers is only required for reading large automata from the filesystem,
as resolving each symbolic state name in the file by a search through the complete
map may require too much computation.

• If a state in an automaton is deleted, the state must be removed from the map. If
a whole automaton is deleted then all state numbers in the automaton must be
deleted in the map.

• As some algorithms may require operations on duplicates of an automaton or on a
duplicated part of the automaton, it must be possible to create temporary copies of
an automaton that contain the same state numbers. The deletion of the automaton
copy may involve automatic state name deletion. Therefore a copy counter is
required for each automaton so only when the last instance of an automaton is
deleted, symbolic state names are removed from the map.

An entity that provides globally unique state numbers and a mapping of state numbers
to symbolic names is denoted a statesymboltable.

With the results of this section the data structure of the automaton model can be speci-
fied.

Specification of the Automaton Data Structure

The data structure of the 5-tuple automaton G := (X, Σ, δ, X0, Xm) is specified as fol-
lows:

• The set of states X is implemented as a sorted set of integer indices that are unique
within an event domain.

• The alphabet Σ is implemented as a sorted set of integer indices that are unique
within an event domain.

• The transition relation δ consists of a sorted set of unique transition objects. Each
transition object holds the integer index of a predecessor state, the integer index of
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an event and the integer index of a successor state. The set is sorted by predecessor
state first, event next and last by successor state. The transition objects may only
contain state indices of X and event indices of Σ.

• The set of initial states X0 is implemented as a sorted set of integer indices that
must be contained in X .

• The set of marked states Xm is implemented as a sorted set of integer indices that
must be contained in X .

In addition, the automaton data structure contains the following objects:

• A pointer (or reference) to an event symbol table object as specified before.

• A pointer (or reference) to a state symbol table object as specified before.

• A integer type counter for copys of the automaton object. The counter is initialized
with 0 and incremented or decremented each time a unique copy of the automaton
object is created or deleted. If an automaton object is deleted and its copy counter
is 0, then the state symbol table is cleared from state indices contained in X . The
copy counter has to be shared by all copies of an automaton object.

Every time an event is added to Σ by its symbolic name the event symbol table is used
to look up its integer index that will be stored. If the symbolic event name is unknown
in the event symbol table a new integer index is created and stored in the symbol table.
When a new state is added to X , a new unique index is requested from the state symbol
table that is then stored in X . New states can be optionally added by specifying a
symbolic state name. Then a new unique index is created for the name and stored in X .

At next abstract data types are used to describe the implementation of the automaton
class.

3.3.2 Abstract Data Types

According to the results of Section 3.2, the set of transitions and the set of marked states
must be sorted. This requires the specification of an abstract data type (ADT) for a sorted
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set. In addition the ADTs map, vector and stack are introduced for the specification of
the automaton model in the next section and the notation of algorithms in subsequent
chapters. For all ADTs an implementation can be found in nearly all standard libraries
of modern object orientated programming languages1. If a programming language does
not provide ADTs, abstract implementations of the most important ADTs can be found
in [AHU+83, Knu98]. An ADT that is used to store an amount of data is also often called
a container.

In the algorithm implementations the methods of an ADT will be denoted by the ADT
object as the first variable.

Before specifying the container ADTs, the Iterator ADT is introduced. An iterator is
an abstract object that holds a position in a container ADT by hiding implementation
details of the container. Most containers have methods that return iterators to access
the data at a position. Iterators can also be incremented to access the next position. The
(virtual) next position after the last element is specified by the End method, if defined
for the container.

Pair

The Pair ADT specifies a pair of two values. A pair by a Pair<TypeFirst,

TypeSecond> statement, where TypeFirst specifies the type of the first value, while
TypeSecond specifies the type of the second value. The values stored in a Pair are
directly accessed by specifying the Pair object in conjunction with first or second
separated by a dot.

Set

The ADT Set specifies an ordered set of values. A set is created by a Set<Type>

statement, where Type specifies the data type stored in the set. The data type must

1However only implementations that store values in their natural data type should be used. If an
implementation of an ADT stores values encapsulated in abstract objects this requires a cast of the object
into the real type at each access, which may slow down computation speed enormously.
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have a defined order. A set may not have any duplicates. Incrementing a set iterator
causes the iterator to move to the next element in the sorted range.

Usually a set is implemented as a balanced binary search tree. Then accessing an el-
ement requires a maximum of log n steps, where n is the number of elements in the
set.

The primary methods of a set are:

• Insert(element)

Inserts an element.

• Erase(element)

Erases an element.

• Begin

Returns an iterator to the first element or to the end of the set if the set is empty.

• End

Returns an iterator to the end of the set.

• Find(element)

Searches for an element and returns its position in the set by an iterator.

• Exists(element)

Searches for an element and returns True or False.

• Size

Returns the number of elements in the set.

• Empty

Returns True or False if the set is empty or not.

• Clear

Clears all set entries.
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Map

The ADT Map specifies an ordered set of keys where each key has an associated value. A
map is created by a Map<KeyType,ValueType> statement, where KeyType specifies
the data type of the search keys and ValueType specifies the data type of the associ-
ated values. The search key data type must have a defined order and there may be no
duplicate keys. The set only allows direct search for keys, not for values. Incrementing
a map iterator causes the iterator to move to the next element in the sorted range.

Analogous to the Set ADT, a Map usually is usually implemented as balanced binary
search tree with the computational complexity O (log n) for accessing a set with cardi-
nality n.

The primary methods of a map are:

• Insert(key,value)

Inserts a key with an associated value.

• Erase(key)

Erases a key with its associated value.

• Begin

Returns an iterator to the first element or to the end of the map if the map is empty.

• End

Returns an iterator to the end of the map.

• Find(key)

Searches for a key and returns its position in the map by an iterator.

• Exists(key)

Searches for a key and returns True or False.

• Size

Returns the number of elements in the map.

• Empty

Returns true or false if the map is empty or not.
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• Clear

Clears all set entries.

• Lookup(key)

Returns the value of the key at a specific position.

In addition, value pairs in a Map object can be set and retrieved by the [] operator and
be used like the Pair ADT introduced before. For the symbolic notation of algorithms
the set of keys in a map will be denoted by the statement Keys().

Vector

The ADT Vector specifies a resizeable, unsorted array, in which elements are accessible
by their positional index. A vector is created by a Vector<Type> statement, where
Type specifies the data type that is stored in the vector. To access the data at an index the
name of the vector variable is specified with the positional index attached within the []
operator by object [index]. The Vector type provides fast random access, but inserting
new elements in the middle of the vector requires all following elements being copied
to higher positions. Incrementing or decrementing a vector iterator causes the iterator
to move to the next or previous positional index.

Aside from accessing elements by the [] operator, the primary methods of a vector are:

• Begin

Returns an iterator to the first index position. If the vector is empty the end of the
vector is returned.

• End

Returns an iterator to the end of the vector.

• Push_Back(element)

Inserts a new value at the end of the vector.

• LastIndex

Returns the position index of the last stored element (the size of the vector may be
bigger).
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• Size

Returns the current size of the vector.

• Empty

Returns True or False if the vector is empty or not.

• Resize

Resizes the vector to a given number of element positions. This may delete exist-
ing elements if the vector is downsized.

• Clear

Removes all elements in the vector and sets its size to zero.

Stack

The Stack ADT specifies a stack of elements where only the the top element is acces-
sible. A stack is created by a Stack<Type> statement, where Type specifies the data
type that is hold in the stack. The stack does not provide iterators.

The primary methods of a stack are:

• Push

Puts an element on top of the stack.

• Pop

Retrieves the topmost element and deletes it from the stack.

• Get

Retrieves the data value of the topmost element.

• Empty

Returns True or False if the list is empty or not.

• Clear

Removes all elements from the stack.
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Using the ADTs defined above, the automaton data model implementation is intro-
duced.

3.3.3 Basic Generator Class Implementation

In this section the implementation of the specified automaton data model as an object
orientated class is presented. The class is called Generator as also other types of automata
are known that do not generate and mark a regular language.

At first further ADTs are introduced. The EventSetADT holds an ordered set of event
indices of the type integer and implements the alphabet object of an automaton as spec-
ified in Section 3.3.1. In contrast the StateSet ADT holds an ordered set of different
state indices of the type integer. For a more general representation the type integer is
defined as Idx, as every event and every state is specified to have an unique index
within an event domain. Then an EventSet holds events of type Idx and a StateSet
holds states of type Idx. To support symbolic event names and state names the ADT
classes EventSymbolTable and StateSymbolTable will be used. Transitions are
represented by objects of the class Transition, which is stored in the ADT TransSet.
This holds a sorted set of Transition objects. A sorting order for the transitions can
be specified on creation of a TransSet object. The Generator finally consists of a
composition of objects of these classes.

EventSet

The EventSet ADT consists of a Set<Idx> and contains an additional pointer to an
EventSymbolTable object that ensures that event indices and symbolic event names
are handled consistently in a domain. In algorithms it will be denoted by the alphabet
symbol Σ. Its basic methods are:

• InsEvent(event)

Puts an event in the set. The event can be specified by either Idx or symbolic
name.
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• DelEvent(event)

Removes an event from the set. The event can be specified by either Idx or sym-
bolic name.

• ExistsEvent(event)

Tests if a event is included in the set. The event can be specified by either Idx or
symbolic name.

In algorithms the methods on EventSet objects will be stated in set notation by ∪, \
and ∈.

StateSet

The StateSet ADT consists of a Set<Idx> and contains an additional pointer to a
StateSymbolTable object which provides unique state indices and symbolic state
names for an event domain. In algorithms the StateSetwill be denoted by the symbol
X . Its basic methods are:

• InsState(), InsState(name)

Gets the next larger state index from the StateSymbolTable object and puts it
in the set. The name parameter is optional and can associate a symbolic name with
the new state index.

• DelState(state)

Deletes an index from the set. If the index had a symbolic name associated its
entry is removed from the StateSymbolTable object. The state parameter may
by specified by either Idx or symbolic name. In the latter case a name lookup of
all indices in the set may be required to find the corresponding state index.

• ExistsState(state)

Tests if a state is included in the set. The state parameter may by specified by
either Idx or symbolic name. In the latter case a name lookup of all indices in the
set may be required to find the corresponding state index.
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Analogous to the EventSet, in algorithms operations on StateSet objects will be stated
in set notation by ∪, \ and ∈.

To support subset construction another method is required:

• Signature()

This method computes a set signature to accelerate algorithms that compare sets
of states. In [Les95] a proposal is given for computing such a set signature. In the
practical implementation of the library the simple SIGNATURE function stated in
Figure 3.5 is used.

function SIGNATURE(X)
Idx sig := 0

int i := 1

for all x ∈ X do
sig := sig + x ∗ i

i := i + 1

end for
return sig

end function

Figure 3.5: Simple set signature

Transition

Transitons are stored in objects of the ADT Transition. A Transition object con-
tains three members of type Idx. The predecessor state is stated by x1, the event by ev
and the successor state by x2, which also corresponds to the algorithmic notation. Ac-
cess to the members will be denoted by transition object name and member, separated
by a dot.

TransSet

The TransSet ADT consists of a Set<Transition>. The set order can be speci-
fied by an optional parameter TransSet<SortType> at the creation of a TransSet,
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where SortType is self explanatory. The sort types of Sortx1evx2, Sortx1x2ev,
Sortevx1x2, Sortevx2x1, Sortx2x1ev or Sortx2evx1 are used. When no order is
specified, the default order Sortx1evx2 is used. In algorithms a TransSet is specified
by the transition relation symbol δ. Its primary methods are:

• SetTransition(x1, ev, x2), SetTransition(t)

Adds a new Transition object to the set, either be specifying the indices of the
states and the event or by specifying an existing Transition object t.

• DelTransition(x1, ev, x2), DelTransition(t)

Removes a transition from the set.

• Transitions(x1)

Returns an iterator to access all transitions with predecessor state x1 in order. The
method may only be called if Sortx1evx2 or Sortx1x2ev was specified as set
order.

• Transitions(x1,ev)

Returns an iterator to access all transitions with predecessor state x1 and event ev
in order. The method may only be called for a Sortx1evx2 set ordering.

• TransitionsByx2(x2)

Returns an iterator to access all transitions with successor state x2 in order. The
method is only valid for a Sortx2evx1 and Sortx2x1ev set ordering.

• TransitionsByx2ev(x2,ev)

Return an iterator to access all transitions with successor state x2 and event ev in
order. The method is only valid for a Sortx2evx1 set ordering.

In terms of TransitionsByx2 and TransitionsByx2ev for every sorting order ac-
cess methods are defined to retrieve iterators for parts of a respectively sorted set of
transitions.

In algorithms the methods are stated by providing the respective TransSet object as a
parameter in front of the method parameters, e.g.

t ∈ Transitions(δ,x1)
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denotes an iteration over all transitions of δ that have a predecessor state x1.

EventSymbolTable

The EventSymbolTable ADT is not directly used in algorithms, but required by
EventSet objects for the management of symbolic event names. The associations be-
tween indices and symbolic names is hold by two maps. A Map<Idx,string>1 object
holds associations from indices to names and a Map<string,Idx> object the associa-
tions from names to indices. The type string represents the symbolic name type of a
programming language. A Idx type counter is used to provide the next unused unique
event index. It has the following main methods:

• InsEvent(name)

This returns a new unique event index and stores the association in its internal
maps. Events have always to be added by providing a symbolic name.

• Name(index)

Returns the symbolic name for an existing index.

• Index(name)

Returns the event index for a symbolic name.

Once created indices stay as long as the EventSymbolTable object exists. The
methods of an EventSymbolTable object usually will be called indirectly by an
EventSet, when calling an EventSet method.

StateSymbolTable

The StateSymbolTable ADT is the counterpart to the EventSymbolTable and
provides similar services for states. In difference it only holds a Map<Idx,string>

to store mappings from state indices to symbolic names while providing no reverse

1For optimized performance also a Vector<string> can be used if Idx is compatible with the
Vector index type. However the more general Map solution is used here.
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lookup. It also contains an Idx type counter to provide unique state indices. Its main
methods are:

• InsState(), InsState(name)

This returns a new unique state index and optionally stores an associated symbolic
name in the internal map.

• DelState(index)

This searches for the index in the map and deletes its entry. If the index has no
name associated nothing happens.

• Name(index)

Returns the symbolic name for a state index.

The methods of the statesymboltable usually will be only called by StateSet objects
that request a new state index or look up the symbolic name of a state index.

Generator Class

With the stated ADTs the Generator class that implements a software model of
the 5-tuple automaton G := (X, Σ, δ, X0, Xm) defined in Definition 2.1.2 is devel-
oped as shown in Figure 3.6. Note that the * at the EventSymbolTable and
StateSymbolTable, which denotes a pointer to an object outside of the Generator.
Within an event domain all Generator objects point to the same EventSymbolTable
and StateSymbolTable object.

While in algorithms, all operations are stated by directly using the objects contained
in a Generator, a programming language implementation of the Generator class
usually encapsulates all inner objects. The practical part of this thesis follows these
programming guidelines.
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Figure 3.6: Generator class



Chapter 4

Algorithms for Regular Languages and
Finite Automata

In this chapter, algorithms for regular languages and finite automata are implemented
with the Generator class and the abstract data types introduced above.

The notation of algorithms is as follows:

• Function parameters are denoted Gindex instead of Gindex while both means the
same.

• Every function parameter called by reference1, is denoted by a & after the param-
eter name.

• The methods of ADTs are stated in Typewriter font. The first parameter of each
method is always the object itself.

• Multiple statements within one line are separated by a semicolon.

• The subscript of a generator variable corresponds to the subscript of its members.
E.g. Xsub, Σsub, δsub, X0,sub and Xm,sub correspond to the generator Gsub.

1This means that the function operates on the object itself and not on a copy of the object.
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4.1 Language Operations

4.1.1 Parallel Composition

The parallel composition is a language operation as well as an automaton method. It
was already defined in Definition 3.2.1. The algorithm implemented for the Generator
class is stated as follows.

Algorithm 4.1 (Parallel Composition). The parallel composition of two given automa-
ton G1 = (X1, Σ1, δ1, X0,1, Xm,1) and G2 = (X2, Σ2, δ2, X0,2, Xm,2) constructs the automa-
ton G1‖2 :=

(

X1‖2, Σ1 ∪ Σ2, δ1‖2, X0,1 × X0,2, Xm,1‖2

)

such that L
(

G1‖2

)

= L (G1) ‖ L (G2)

and Lm

(

G1‖2

)

= Lm (G1) ‖ Lm (G2). The synchronous product of two languages is
defined in [Won04, CL99].

The following algorithm is a proposal by T. .

1: function PARALLEL(Generator G1
&, GeneratorG2

&, GeneratorG
1‖2
& , map<pair

<Idx,Idx>,Idx>RCMap&)
2: /* Local variables */
3: Stack<Pair<Idx,Idx>> Xwaiting /* Stack of state index pairs */
4: Pair<Idx,Idx> pcurrent, pnew /* State pairs */
5: Idx xtmp /* Temporary state index */
6: EventSet Σshared := Σ1 ∩ Σ2 /* The shared alphabet */
7: /* Initialization */
8: for all (x1, x2) ∈ X0,1 × X0,2 do
9: Push(Xwaiting,(x1, x2))

10: end for
11: /* Start */
12: while Xwaiting 6= ∅ do
13: pcurrent := Pop(Xwaiting)
14: /* Iteration over all transitions at current state in G1 */
15: for all t1 ∈ Transitions(δ1,pcurrent.first) do
16: /* If the event of the current transition is not shared */
17: if t1.x1 /∈ Σshared then
18: pnew := (t1.x2, pcurrent.second)

19: if pnew /∈ Keys(RCMap) then
20: push(Xwaiting,pnew)
21: xtmp := InsState(X1‖2)

62



22: RCMap [pnew] := xtmp

23: else
24: xtmp := RCMap [pnew]

25: end if
26: SetTransition(δ1‖2,RCMap [pcurrent],t1.ev,xtmp)
27: /* If the event of the current transition is shared */
28: else
29: for all t2 ∈ Transitions(δ2,t1.ev) do
30: pnew := (t1.x2, t2.x2)

31: if pnew /∈ Keys(RCMap) then
32: push(Xwaiting,pnew)
33: xtmp := InsState(X1‖2)
34: RCMap [pnew] := xtmp

35: else
36: xtmp := RCMap [pnew]

37: end if
38: SetTransition(δ1‖2,RCMap [pcurrent],t1.ev,xtmp)
39: end for
40: end if
41: end for
42: /* Iteration over all transitions at current state in G2 */
43: for all t2 ∈ Transitions(δ2,pcurrent.second) do
44: /* If the event of the current transition is unshared */
45: if t2.ev /∈ Σshared then
46: pnew := (pcurrent.first, t2.x2)

47: if pnew /∈ Keys(RCMap) then
48: Push(Xwaiting,pnew)
49: xtmp := InsState(Xres)
50: RCMap [pnew] := xtmp

51: else
52: xtmp := RCMap [pnew]

53: end if
54: end if
55: end for
56: /* Mark states in G1‖2 */
57: for all x1 ∈ Xm,1 do
58: for all x2 ∈ Xm,2 do
59: if (x1, x2) ∈ Keys(RCMap) then
60: Xm,1‖2 := Xm,1‖2 ∪ {RCMap [(x1, x2)]}
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61: end if
62: end for
63: end for
64: end while
65: end function

Note: The map RCMap, given as a reference parameter in the function, can be used for
constructing state names of G1‖2 on demand as proposed in Section 3.3.1. If this is not
required a convenience PARALLEL function can be created that hides the parameter.

4.1.2 Projection

The natural projection is defined in Definition 3.2.2. The algorithm resembles the ab-
stract algorithm provided in Chapter 3.

Algorithm 4.2 (Projection). Given a finite automaton G = (X, Σ, δ, X0, Xm) and a projec-
tion alphabet Σ0 ⊆ Σ. The function PROJECT applies the projection p0 : Σ∗ → Σ∗

0 directly
on the automaton G. In addition, a helper function COMPACCREACH (compute acces-
sible reach) is given that computes the states that are reachable by invisible transitions
(meaning t.ev /∈ Σproj) from a given state.

Let G0 be the resulting automaton of a function call PROJECT(G, Σ0). Then L (G0) =

p0 (L (G)) and Lm (G0) = p0 (Lm (G)).

1: function PROJECT(Generator G&, EventSet Σ0
&)

2: /* local variables */
3: StateSetXreach /* reachable states */
4: Stack<Idx>Xwaiting/* waiting list */
5: StateSetXdone /* processed states */
6: Idx xcurrent /* current state */
7: /* start */
8: for all x ∈ X0 do
9: Push(Xwaiting,x)

10: end for
11: while Xwaiting 6= ∅ do
12: xcurrent := Pop(Xwaiting)
13: Xdone := Xdone ∪ {xcurrent}
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14: /* compute accessible reach local paths1 */
15: COMPACCREACH(G, Σ0, Xreach, xcurrent)
16: for all t ∈ Transitions(δ,xcurrent) do
17: if t.ev /∈ Σ0 then
18: DelTransition(δ,t)
19: end if
20: end for
21: for all xreach ∈ Xreach do
22: for all t ∈ Transitions(δ,xreach) do
23: if t.ev ∈ Σ0 then
24: SetTransition(xcurrent,t.ev,t.x2)
25: if t.x2 /∈ Xdone then
26: Push(Xwaiting,t.x2)
27: end if
28: end if
29: end for
30: /* if locally reachable state is marked, mark xcurrent */
31: if xreach ∈ Xm then
32: Xm := Xm ∪ {xcurrent}

33: end if
34: end for
35: end while
36: end function

The COMPACCREACH function is defined as follows.
1: function COMPACCREACH(Generator G&, EventSet Σ0

&, StateSet Xreach
& ,

Idx xstart)
2: /* local variables */
3: Stack<Idx>Xwaiting

4: Idx xcurrent

5: /* start */
6: Push(Xwaiting,xstart)
7: while Xwaiting 6= ∅ do
8: xcurrent := Pop(Xwaiting)
9: for all t ∈ Transitions(δ,xcurrent) do

10: if t.ev /∈ Σ0 ∧ t.x2 /∈ Xreach then
11: Push(Xwaiting,t.x2)

1A local path is a sequence of low-level events in Σ − Σ
0.
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12: Xreach := Xreach ∪ {t.x2}
13: end if
14: end for
15: end while
16: end function

4.1.3 Inverse Projection

The inverse projection is defined as follows.

Definition 4.1.1 (Inverse Projection [Won04]). For an alphabet Σ0 ⊆ Σ the inverse projec-
tion (p0)

−1 : Σ∗
0 → 2Σ∗ is

(p0)
−1 (t) := {s ∈ Σ∗ | p0 (s) = t}

for t ∈ Σ∗
0.

The inverse projection of a language L0 ∈ Σ∗
0 is

(p0)
−1 (L0) := {s ∈ Σ∗ | ∃t ∈ L0 s.t. p0 (s) = t} .

Algorithm 4.3 (Inverse Projection). Given a finite automaton G0 = (X0, Σ0, δ, X0,0, Xm,0)

and a alphabet Σ0 ⊆ Σ. The generated language of the automaton is extended to al-
phabet Σ directly in the automaton by the function INVPROJECT. Let G be the result-
ing automaton of a function call INVPROJECT(G, Σ). Then L (G) = (p0)

−1 (L (G0)) and
Lm (G) = (p0)

−1 (Lm (G0)).

1: function INVPROJECT(Generator G0
&, EventSet Σ& )

2: /* local variables */
3: EventSet Σnew := Σ \ Σ0

4: /* start */
5: for all x ∈ X0 do
6: for all σ ∈ Σnew do
7: SetTransition(δ0,x,σ,x)
8: end for
9: end for

10: end function
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4.2 Automata Operations

4.2.1 Accessible

The accessible operation removes all states, that cannot be reached by a transition path
starting at an initial state from an automaton. Formally [CL99],

• ACCESSIBLE(G) := (Xacc, Σ, δacc, X0, Xm,acc), where

• Xacc := {x ∈ X | ∃s ∈ Σ∗, ∃x0 ∈ X0 s.t. δ (x0, s) = x},

• Xm,acc := Xm ∩ Xacc,

• δacc := δ|Xacc×Σ→Xacc
.

Algorithm 4.4 (Accessible Automaton). Given an automaton G = (X, Σ, δ, X0, Xm). The
ACCESSIBLE function returns True if the automaton is nonempty and no states had to
be removed, otherwise False. Internally the set of reachable states is computed by the
function ACCESSIBLESET while ACCESSIBLE only removes the set difference and han-
dles the return value. ACCESSIBLESET uses the recursive function CHECKACCESSIBLE

to compute the set of reachable states. The ACCESSIBLESET function is also used in other
algorithms. The accessible operation has no effect on L (G) and Lm (G).

1: function ACCESSIBLE(Generator G&)
2: /* local variables */
3: StateSetXnot_accessible

4: /* start */
5: if X = ∅ then
6: return False
7: end if
8: Xnot_accessible := X\ ACCESSIBLESET(G)
9: if Xnot_accessible 6= ∅ then

10: for all x ∈ Xnot_accessible do
11: X := X \ {x}

12: for all t ∈ Transitions(δ,x) do
13: DelTransition(δ,t)
14: end for
15: X0 := X0 \ {x}
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16: Xm := Xm \ {x}

17: end for
18: return False
19: else
20: return True
21: end if
22: end function

The ACCESSIBLESET function returns a StateSet containing the reachable states in an
automaton.

1: function ACCESSIBLESET(Generator G&)
2: /* local variables */
3: StateSetXacc

4: /* start */
5: for all x ∈ X0 do
6: CHECKACCESSIBLE(G, Xacc, x)
7: end for
8: return Xacc

9: end function

1: function CHECKACCESSIBLE(Generator G&, StateSet Xacc
& , Idx xstart)

2: if xstart /∈ Xacc then
3: Xacc := Xacc ∪ {xstart}

4: for all t ∈ Transitions(δ,xstart) do
5: CHECKACCESSIBLE(G, Xacc, t.x2)
6: end for
7: end if
8: end function

4.2.2 Coaccessible

Corresponding to the accessible operation the coaccessible operation removes all states
from an automaton, that do not have a transition path to a marked state. Formally
[CL99],

• COACCESSIBLE(G) := (Xcoacc, Σ, δcoacc, X0,coacc, Xm), where
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• Xcoacc := {x ∈ X | ∃s ∈ Σ∗, ∃xm ∈ Xm s.t. δ (xm, s) ∈ Xm},

• X0,coacc := {x0 ∈ X0 | x0 ∈ Xcoacc},

• δcoacc := δ|Xcoacc×Σ→Xcoacc
.

Algorithm 4.5 (Coaccessible Automaton). Given an automaton G = (X, Σ, δ, X0, Xm).
At first the set of coaccessible states is computed by the function COACCESSIBLE-
SET, that itself calls the recursive function CHECKCOACCESSIBLE. COACCESSIBLE re-
turns True if all states in the automaton are coaccessible and False if not. While
L(COACCESSIBLE(G)) = Lm (G) the operation has no effect on Lm (G).

1: function COACCESSIBLE(Generator G&)
2: /* local variables */
3: StateSetXnot_coaccessible

4: /* start */
5: if X = ∅ then
6: return False
7: end if
8: Xnot_coaccessible := X\ COACCESSIBLESET(G)
9: if Xnot_coaccessible 6= ∅ then

10: for all x ∈ Xnot_coaccessible do
11: X := X \ {x}

12: for all t ∈ Transitions(δ,x) do
13: DelTransition(δ,t)
14: end for
15: X0 := X0 \ {x}

16: Xm := Xm \ {x}

17: end for
18: return False
19: else
20: return True
21: end if
22: end function

69



The COACCESSIBLESET function returns a StateSet containing the states that can
reach a marked state via a transition path.

1: function COACCESSIBLESET(Generator G&)
2: /* local variables */
3: StateSetXcoacc

4: TransSet<Sortx2evx1> δr = δ /* build x2,ev,x1 sorted set of transitions */
5: /* start */
6: for all x ∈ Xm do
7: CHECKCOACCESSIBLE(G, δr, Xcoacc, x)
8: end for
9: return Xcoacc

10: end function

1: function CHECKCOACCESSIBLE(Generator G&, TransSet<Sortx2evx1> δr
&,

StateSetXcoacc
& , Idx xstart)

2: if xstart /∈ Xcoacc then
3: Xcoacc := Xcoacc ∪ {xstart}

4: for all t ∈ Transitions(δr,xstart) do
5: CHECKACCESSIBLE(G, Xcoacc, t.x1)
6: end for
7: end if
8: end function

4.2.3 Trim

Trim is a convenience method for computing the accessible and coaccessible part of
an automaton. An automaton is trim if all states in the automaton are accessible and
coaccessible. Formally, the trim operation is defined as

• TRIM := ACCESSIBLE(G) ∧ COACCESSIBLE(G) .

Algorithm 4.6 (Trim Automaton). Given an automaton G = (X, Σ, δ, X0, Xm). The TRIM

function removes states by calling the ACCESSIBLE and the COACCESSIBLE function. If
no state is removed True is returned, else the result is False.
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1: function TRIM(Generator G&)
2: /* local variables */
3: Bool is_accessible

4: Bool is_coaccessible

5: /* start */
6: is_accessible := ACCESSIBLE(G)
7: is_coaccessible := COACCESSIBLE(G)
8: if is_accessible = True ∧ is_coaccessible = True then
9: return True

10: else
11: return False
12: end if
13: end function

4.2.4 Determine

The determine method computes the deterministic automaton for a nondeterministic one
by subset construction, according to Definition 3.2.3.

The implementation of the method is straightforward. In Section 3.2.3 two main areas
of computation in subset construction have been pointed out. The set inclusion tests in
the set of subsets by a hash table and supporting set signatures is directly implemented
in the stated algorithm. The optimization by multiway merge according to [Les95] to
compute the deterministic successor states of a subset is illustrated at the end of the
section.

Algorithm 4.7 (Deterministic Automaton). For a given nondeterministic automaton
Gnd = (Xnd, Σ, δnd, X0,nd, Xm,nd) the DETERMINE function computes the determinis-
tic automaton Gd = (Xd, Σ, δd, x0,d, Xm,d) such that L (Gd) = L (Gnd) and Lm (Gd) =

Lm (Gnd). In addition the function DETERMINISTIC is provided, that checks a given au-
tomaton G = (X, Σ, δ, X0, Xm) for nondeterminism.

The DETERMINE function is implemented by two additional call-by-reference param-
eter PowerStates and DetStates that hold information for the implementation of the
algorithms in [Sch05b]. This will be discussed in Chapter 6.
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1: function DETERMINE(Generator Gnd
& , Generator Gd

&, Vector <StateSet>
PowerStates&, Vector<Idx>DetStates& )

2: /* local variables */
3: StateSetXnew /* holds newly constructed subsets */y
4: Idx xnew

5: Map<int,Vector<int>> HashMap /* implements a hash table */
6: int sig /* set signature */
7: int i, j /* vector indices */
8: Bool new

9: /* start */
10: Σd := Σnd

11: /* initialization */
12: xnew := InsState(Xd)
13: for all x ∈ Xnd,0 do
14: Xnew := Xnew ∪ {x}

15: end for
16: sig := Signature(Xnew)
17: PushBack(PowerStates,Xnew); PushBack(DetStates, xnew)
18: /* creates new map entry and directly adds vector element */
19: PushBack(HashMap [sig], Lastindex(PowerStates))
20: /* iteration over all vector entries */
21: for i := 0; i ≤ LastIndex(PowerStates); i := i + 1 do
22: Xnew := ∅

23: for all σ ∈ Σnd do
24: for all x ∈ PowerStates [i] do
25: for all t ∈ Transitions(δnd,x,σ) do
26: Xnew := Xnew ∪ t.x2
27: end for
28: end for
29: sig := Signature(Xnew)
30: new := True
31: if sig ∈ Keys(HashMap) then
32: /* iteration over vector of PowerStates vector indices */
33: for all j ∈ HashMap [sig] do
34: if Xnew = PowerStates [j] then
35: new := False
36: break; /* end for all loop */
37: end if
38: end for
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39: end if
40: if new = True then
41: xnew := InsState(Xd)
42: PushBack(PowerStates,Xnew); PushBack(DetStates, xnew)
43: PushBack(HashMap [sig], Lastindex(PowerStates))
44: for all x ∈ Xnew do
45: if x ∈ Xm,nd then
46: Xm,d := Xm,d ∪ xnew

47: break; /* end for all loop */
48: end if
49: end for
50: end if
51: /* introduce transition in Gd */
52: SetTransition(δd, DetStates [i], σ, xnew)
53: end for
54: end for
55: end function

The function DETERMINISTIC only tests if an automaton is deterministic.
1: function DETERMINISTIC(Generator G&)
2: /* local variables */
3: Idx xlast := 0

4: Idx σlast := 0

5: /* start */
6: if Size(X0)> 1 then
7: return False
8: else
9: for all t ∈ δ do

10: if xlast = t.x1 ∧ σlast = t.ev then
11: return False
12: end if
13: xlast := t.x1; σlast := t.ev
14: end for
15: end if
16: return True
17: end function
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Optimization by Multiway Merge

As already noted the algorithm can be optimized by a multiway merge to compute the
successor states of a deterministic state. In line 23 an iteration over all events is done.
For each nondeterministic state in the subset, the transitions from the state driven by
the current event have to be computed in the two nested loops in the lines 24 to 28. This
causes a computational expensive search in the set of transitions in an inner loop.

The search can be avoided by placing an iterator for each state in the subset at the first
transition of that state in the set of transitions. Then a multiway merge of the transi-
tions at which the iterators currently point to is applied. This results in two vectors, a
vector of events with event indices in ascending order and a vector of corresponding
successor states. The vector of events is partitioned, where each corresponding parti-
tion element in the successor state vector builds a new deterministic state that will be
processed according to lines 29 to 52. As partitioning the resulting vectors is trivial this
is not included. The multiway merge algorithm is given as follows.

1: Idx σlast

2: Idx xlast

3: Vector<Idx> EventV ector

4: Vector<Idx> StateV ector

5: /* vector of TransSet iterators */
6: Vector<TransSet::Iterator> Iterators

7: /* place an iterator at each state of the subset in δ */
8: for all x ∈ PowerStates [i] do
9: Iterator it := Find(δ,x)

10: if it 6= End(δ) then
11: PushBack(Iterators,it)
12: end if
13: end for
14: while Iterators 6= ∅ do
15: find it ∈ Iterators such that it.ev is the smallest
16: xlast := it.x1
17: σlast := it.ev
18: loop
19: if it = End(δ) ∨ it.x1 6= xlast then
20: Iterators := Iterators \ {it}
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21: else if it.ev = σlast then
22: PushBack(EventV ector,it.ev)
23: PushBack(StateV ector,it.x2)
24: it++ /* set iterator to next transition */
25: else
26: break; /* exit loop */
27: end if
28: end loop
29: end while

The algorithm initialization for a subset is shown in Figure 4.1. It is assumed the lexical
ordering of the events resembles the ordering of their indices. At first the transition
5 − a − 9 is read at it [0]. Then the next iterator with the lowest event, it [1] is chosen.
After successively reading two transitions 8 − a − 2 and 8 − a − 8, it [0] is chosen again.
Then the transitions 5− b− 8 and 5− b− 15 are read. After reading 8− b− 13 at it [1] this
iterator is removed. The algorithm continues with 11 − b − 5, 5 − c − 3 and the removal
of iterator it [0]. At last the rest of the transitions at it [2] is read, 11−c−6 and 11−c−10.

Figure 4.1: Initialization of multiway merge of transitions from a subset

4.2.5 State Space Minimization

The state space minimization method constructs a canonical recognizer for a determinis-
tic finite automaton. As already stated in Section 2.1, the resulting set of states of the
minimized automaton is unique up to an isomorphism [HU79].
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Algorithm 4.8 (State Space Minimization). For a given deterministic automaton G =

(X, Σ, δ, X0, Xm) the STATEMIN function computes the canonical recognizer Gmin =

(Xmin, Σ, δmin, x0,min, Xm,min), such that L (Gmin) = L (G) and Lm (Gmin) = Lm (G). This
function directly implements the algorithm provided in [Hop71, AHU+83] with a com-
plexity of O (|Σ| · |X| · log |X|) to compute the canonical recognizer.

1: function STATEMIN(Generator G&, GeneratorGmin
& )

2: /* local variables; naming corresponds to [AHU+83] */
3: Vector<StateSet>B /* blocks */
4: int i, j

5: Set<int>Waiting

6: TransSet<Sortevx2x1> δr := δ /* ev,x2,x1 sorted transition relation */
7: StateSetXcurrent, Xinverse, X∩, X−

8: Map<Idx,int> IndexMap /* maps blocks to new states */
9: Idx xnew

10: /* start */
11: ACCESSIBLE(G) /* ensure G contains only accessible states */
12: if Size(X)≤ 1 then
13: Gmin := Copy(G)
14: return
15: end if
16: Σmin := Σ

17: /* set up blocks */
18: i := 0

19: if Size(X)− Size(Xm ) > 0 then
20: PushBack(B,X \ Xm)
21: Waiting := Waiting ∪ {i}

22: i := i + 1

23: end if
24: PushBack(B,Xm)
25: Waiting := Waiting ∪ {i}

26: i := i + 1

27: while Waiting 6= ∅ do
28: pick i ∈ Waiting; Waiting := Waiting \ {i}

29: xcurrent := B [i]

30: /* compute Xinverse := f−1 (B [i]) for each σ ∈ Σ */
31: for all σ ∈ Σ do
32: Xinverse := ∅

33: for all x ∈ Xcurrent do
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34: for all t ∈ TransitionsByevx21(δr,σ,x) do
35: Xinverse := Xinverse ∪ {t.x1}
36: end for
37: end for
38: if Xinverse 6= ∅ then
39: for j = 0; j < Size(B), j := j + 1 do
40: X∩ := B [j] ∩ Xinverse

41: X− := B [j] \ X∩

42: if X∩ = ∅ ∨ X− = ∅ then
43: continue /* next for iteration */
44: end if
45: PushBack(B,X∩)
46: B [j] := X−/* replace old block */
47: if j ∈ Waiting then/* mark both waiting */
48: Waiting := Waiting ∪ {LastIndex(B)}
49: else/* mark only smaller as waiting */
50: if Size(X∩) > Size(X−) then
51: Waiting := Waiting ∪ {LastIndex(B)}
52: else
53: Waiting := Waiting ∪ {j}

54: end if
55: end if
56: end for
57: end if
58: end for
59: end while
60: /* build minimized generator */
61: for i := 0, i ≤ LastIndex(B), i := i + 1 do
62: xnew := InsState(Xmin)
63: for all x ∈ B [i] do
64: IndexMap [x] := i

65: if x ∈ X0 then
66: X0,min := X0,min ∪ {xnew}

67: end if
68: if x ∈ Xm,min then
69: Xm,min := Xm,min ∪ {xnew}

70: end if
1TransitionsByevx2 is defined according to Section 3.3.3 as a object method that returns a

TransSet<Sortevx2x1> iterator.
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71: end for
72: for all t ∈ δ do
73: SetTransitions(δmin, IndexMap [t.x1], t.ev, IndexMap [t.x2])
74: end for
75: end for
76: end function
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Chapter 5

Automaton Extension and Algorithms
for Supervisory Control

In this chapter, the automaton model specified in Chapter 3 is extended for the require-
ments of supervisory control by the introduction of uncontrollable events in Section
5.1. Then the extended model is applied to the Generator automaton class in Sec-
tion 5.2 which results in the cGenerator class. At last the algorithm for computing
the supremal controllable and nonblocking sublanguage is stated, with an additional
section about implementing a function that tests controllability.

5.1 Introduction of Events Properties

When modelling DES in RW control theory the set of events Σ in a DES is divided
into two disjoint sets, the set of controllable events Σc and the set of uncontrollable
events Σuc. This was already shown in Section 2.2. It is assumed that the division is
consistent for all automata. Therefore an event cannot be controllable in one automaton
and uncontrollable in another automaton.

This is an important result for modelling DES in software as it means the controllability
properties of events can be stored globally for all events in an system. As other theory
approaches may introduce further event properties that are consistent within a system,
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a general approach is required to hold a set of event properties for all events in an event
domain.

Therefore an entity that holds the controllability property of events and is extensible to
store further event properties is proposed as follows:

• Each property is stored as a set of binary values. Such a set is usually called a
bitset. The required number of bits to store a property is one for binary properties
like controllability, but may be bigger if a property can take more than two values.
To efficiently access the bitset, it is implemented by the natural integer type of the
computer architecture. Then a 32bit computer architecture can hold up to 32 event
properties. If more bit values are required the double long integer can be used or
any other data type that allows bit by bit manipulation.

• The mapping of events to their respective bitset is implemented by a Map<Idx,int>1

where the key holds the event index and the value stores the bitset.

Bits in a bitset are enabled by combining the current value of the bitset with an int that
has all bits, that are to be enabled by the logical AND operation set to 1 . In contrast, bits
are disabled by combining the current bitset value with an int having all bits set to 0

that are to be disabled by the logical OR operation. To retrieve a set of bits of the bitset,
it is combined with an int where all bits that are to be retrieved are set to 1 by the AND
operation. Bits which are not requested are set to 0 while the requested bits still have
their value 0 or 1.

As an example, the controllability property may be represented by the first bit in an int.
An event is modelled controllable if the controllable bit is set to 1 and uncontrollable
if 0. Then defining an event e to be controllable requires a e OR 0x0000001 opera-
tion and defining it to be uncontrollable a e AND 0xFFFFFFF0 operation in the octal
integer notation. The controllability property can be retrieved by a e AND 0x0000001

operation, which blends out all other bits. Determining the value then simply is done
by comparing the retrieved value with 0x00000001 or 0x00000000.

1Note that this can also be implemented by a Vector<int> if the Vector index type is compatible
with Idx for performance optimizations. However the more general Map solution is proposed here, as a
Vector always requires to allocate as much element blocks in memory as required to access the largest
Idx by a vector index . In contrast a Map can also hold only bitsets for a subset of the events.
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The entity that holds the controllability property of all events within an event domain
is called an eventflagtable, representing the flag character of a bit. The implementation as
an ADT is presented in the next section.

5.2 Controllable Generator Class Implementation

The Generator class introduced in Section 3.3.3 has no implementation of controllable
events. In this section, the class is extended to a controllable Generator class that suits
the requirements of supervisory control. An eventflagtable entity located outside of the
data structure of an automaton was proposed to provide the controllability property for
events. The implementation of this entity as the ADT FlagTablewill be shown at first,
followed by the extended automaton class cGenerator.

FlagTable

The FlagTableADT is created by a FlagTable<TBitsetType> statement and holds
a Map<Idx,TBitsetType> object internally. This more general implementation of the
specified eventflagtable entity by a variable type for storing the bitset is well suited for
different approaches in theory and can be used to assign attributes to events and states.
For the RW control theory a FlagTable<int> is used as proposed before.

The FlagTable provides the following methods:

• SetFlags(index,flags)

This method enables flags in the bitset by the logical OR operation. The first pa-
rameter contains the Idx identifier and the second holds a TFlagType having all
bits that are to be enabled set to 1.

• ClrFlags(index,flags)

This method disables flags in the bitset by the logical AND operation on the inverse
argument. The first parameter specifies the Idx identifier. The second holds a
TBitSetType, where all flags that are to be disabled are set to 0 while all other
have to be set to 1.
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• GetFlags(index,flags,defaultflags)

The method retrieves bits of a bitset by the logical AND operation. Like in the
other methods, the first parameter specifies the Idx type identifier. The second
parameter holds the set of bits that are to be retrieved. Bits of interest have to be set
to 1, the remaining bits are set to 0. The third parameter contains the default bitset
value, that is returned if no bitset was stored in the map for the given identifier.

• ExistsFlag(index)

This method will be called, to test if the internal map contains a bitset for a identi-
fier. The index parameter specifies the Idx type identifier. True is returned, ff a
bitset exists for the identifier, else False.

With the FlagTable ADT, the extension of the Generator class for supervisory con-
trol can now be implemented.

cGenerator

The object class that implements an automaton with controllable and uncontrollable
events is called cGenerator (controllable Generator). In addition to the Generator
class, it contains a pointer to a FlagTable<int> object outside the class that holds
the controllability properties of events within an event domain. The class implements
the same 5-tuple automaton G := (X, Σ, δ, X0, Xm) as the Generator class with an
additional division of Σ in the two disjoint sets Σc and Σuc that is modelled by the
FlagTable class.

The cGenerator class provides methods to support the handling of controllable events
like SetControllable(index), SetUncontrollable(index) to set the control-
lability property of an event or IsControllable(index) to test the controllabili-
ty property of an event. As the implementation of methods for controllable events is
straightforward this is not covered here.

In algorithms a cGenerator object will be stated by the symbol G. The alphabet of
uncontrollable events is implicitly included by the statement of a cGenerator object.
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Figure 5.1: cGenerator class

5.3 Nonblocking Supremal Controllable Sublanguage

The supremal controllable sublanguage as well as the nonblocking control theorem are
defined in Definition 2.2.5 as the union of all controllable sublanguages that agree with
a specification language E ⊆ L (G). This algorithm computes the solution to the basic
problem of supervisory control as stated in Section 2.2.

At first the algorithm computes the parallel composition of a plant G and a specification
Gspec with L (Gspec) = E which results in the supervisor automaton Gsup. Then in a loop
two operations are executed until a fixpoint is reached:

• The supremal controllable sublanguage of Gsup with respect to G is computed.
This requires identifying bad states, where strings followed in G and Gsup in par-
allel leave Gsup via an uncontrollable event. Then all transitions and states are
removed from Gsup that can reach the bad states via uncontrollable events.

• The TRIM operation is executed on Gsup.
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A fixpoint is reached, when no string of L (G) leaves L (Gsup) via an uncontrollable event
and Gsup is trim. This is also the case, if all states in Gsup have been removed and Gsup

consists of the empty language ∅. Then computing a supervisor for the specification
Gspec is not possible at all.

The algorithm is implemented by the function SUPCONNB that computes the nonblock-
ing supremal controllable sublanguage and calls PARALLEL and then executes SUPCON

and TRIM in a loop. SUPCON computes the supremal controllable sublanguage and
calls the function REMOVEUCBACKWARDS (remove uncontrollable backwards) to re-
move states and transitions in Gsup. The PARALLEL function is stated in Section 4.1.1
and TRIM is introduced in Section 4.2.3. Remarks on optimizing the algorithm are given
at the end of the section .

Algorithm 5.1 (Supremal Controllable Sublanguage). Given a finite automaton of type
cGenerator G := (X, Σ, δ, X0, Xm) with a set of uncontrollable events Σuc ⊆ Σ and a
specification automaton of type Generator Gspec := (Xspec, Σspec, δspec, X0,spec, Xm,spec).
Then a supervisor automaton Gsup := (Xsup, Σsup, δsup, X0,sup, Xm,sup) is computed that
either solves the basic supervisory control problem or contains the empty language ∅. A
reference parameter Map<Idx,Pair<Idx,Idx>>RCMap is used to hold the mapping
of states xsup ∈ Xsup to combined states (x, xspec) ∈ X × Xspec.

Require: Σ = Σspec

1: function SUPCONNB(cGeneratorG&, GeneratorGspec
& , Map<Idx, Pair<Idx,

Idx>> RCMap&, cGeneratorGsup
& )

2: /* local variables */
3: Bool is_controllable, is_trim

4: /* start */
5: PARALLEL(G, Gspec, Gsup, RCMap)
6: repeat
7: is_controllable := SUPCON(G, Gsup, RCMap)
8: is_trim := TRIM(Gsup)
9: until is_controllable ∧ is_trim

10: end function

The SUPCON function follows strings in G and Gsup and calls REMOVEUCBACKWARDS

if a bad state is found.

1: function SUPCON(cGenerator G&, Generator Gsup
& , Map<Idx, Pair<Idx,
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Idx>> RCMap& )
2: /* local variables */
3: Stack<Idx>Xwaiting, Xwaiting,sup /* waiting list */
4: StateSetXdiscovered /* discovered states in Xsup */
5: StateSetXbad /* forbidden states in Xsup */
6: Idx xcurrent, xcurrent,sup

7: TransSet<Sortx2evx1> δr := δ /* x2,ev,x1 sorted set of transitions */
8: /* start */
9: /* initialize waiting list */

10: for all x ∈ X0 do
11: for all xsup ∈ X0,sup do
12: Push(Xwaiting,x)
13: Push(Xwaiting,sup,xsup)
14: end for
15: end for
16: while Xwaiting 6= ∅ do
17: xcurrent := Pop(Xwaiting)
18: xcurrent,sup := Pop(Xwaiting,sup)
19: /* process all transitions at current state in G */
20: for all t ∈ Transitions(δ,xcurrent) do
21: if t.ev ∈ Σuc ∧ t.ev /∈ Λ (δsup, xcurrent,sup) then
22: REMOVEUCBACKWARDS(Gsup , δr, Xbad, xcurrent,sup)
23: break /* continue with next pair on waiting list */
24: else
25: for all tsup ∈ Transitions(δsup,xcurrent,sup,t.ev) do
26: /* add successor states to waiting list if undiscovered */
27: if xcurrent,sup /∈ Xdiscovered then
28: Push(Xwaiting,t.x2)
29: Push(Xwaiting,sup,tsup.x2)
30: end if
31: /* if successor state is not forbidden add to backward transitions */
32: if tsup.x2 /∈ Xbad then
33: SetTransition(δr,tsup)
34: else if t.ev ∈ Σuc then
35: REMOVEUCBACKWARDS(Gsup , δr, Xbad, xcurrent,sup)
36: t := End(δ,xcurrent) /* exit outer loop on next iteration */
37: break; /* exit inner loop */
38: end if
39: end for
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40: end if
41: end for
42: Xdiscovered := Xdiscovered ∪ {xcurrent,sup}

43: end while
44: if Xforbidden = ∅ then
45: return True
46: else
47: return False
48: end if
49: end function

The function REMOVEUCBACKWARDS removes all states and transitions backwards
that could make Gsup reach a bad state, i.e. along uncontrollable events.

1: function REMOVEUCBACKWARDS(cGeneratorGsup
& , TransSet< Sortx2evx1>

δr
&, StateSet Xbad

& , Idx xstart )
2: /* local variables */
3: Stack<Idx>Xwaiting

4: Idx xcurrent

5: /* start */
6: Push(Xwaiting,xstart)
7: Xbad := Xbad ∪ {xstart}

8: while Xwaiting 6= ∅ do
9: xcurrent := Pop(Xwaiting)

10: /* remove transitions containing uncontrollable events backwards */
11: for all t ∈ TransitionsByx2(δr,xcurrent) do
12: if t.ev ∈ Σuc ∧ t.x1 /∈ Xbad then
13: Push(Xwaiting,t.x1)
14: Xbad := Xbad ∪ {t.x1}
15: end if
16: end for
17: /* remove xcurrent from Gsup */
18: Xsup := Xsup \ {xcurrent}

19: for all t ∈ Transitions(δsup,xcurrent) do
20: DelTransition(δsup,t)
21: end for
22: X0,sup := X0,sup \ {xcurrent}

23: Xm,sup := Xm,sup \ {xcurrent}

24: end while
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25: end function

Optimization Notes

Two optimizations are possible for computing a supervisor by the SUPCONNB function:

• The PARALLEL function in SUPCONNB can be exchanged by a function that per-
forms the parallel composition by not following transitions from bad states. In-
stead bad states and the states that can be directly reached by transitions from bad
states are stored in a set of bad states as in the SUPCON function.

• If both G and Gspec are known to be deterministic, a parallel composition function
can take advantage of the transition ordering in δ and δspec by following transi-
tions in both automata in parallel instead of using two nested loops, like in the
PARALLEL function. This is possible because both automata operate on the same
alphabet which is generally not the case in the PARALLEL function.

5.4 Controllability

The definition of controllability is given in Definition 2.2.3. The algorithm for a function
CONTROLLABLE that tests the controllability of a given specification Gspec with respect
to an automaton G is very similar to the SUPCON function. The only required change is,
that no state may be deleted. Instead the CONTROLLABLE function must return False

when a state is found, where G leaves the specification automaton Gspec by an uncon-
trollable event and True if no such state is found.
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Chapter 6

Algorithms for Nonblocking
Hierarchical Control

In [Sch05b], an extension to RW theory for the hierarchical control of decentralized DES
is provided. Different from the RW control theory, this approach takes advantage of the
decentralized structure of a system and enables the control of large scale systems, e.g.
manufacturing systems. The decentralized system components are modelled as finite
automata and build the lowest level of a multi-level control hierarchy. Then interacting
components are abstracted to their common behavior and merged on a higher level of
the control hierarchy. The abstraction is done by the natural projection of the alphabet
on the lower level to the set of common events, referred to as the high-level alphabet.
The main objective of the approach is a reduction of the state space. Each component
on a level of the hierarchy is controlled by an own local supervisor and a supervisor on
the next hierarchical level. The supervisor on the highest level then controls the whole
system.

Formally, the low-level system is an automaton G and the high-level automaton Ghi

is computed using the projection phi : Σ∗ →
(

Σhi
)∗ with L

(

Ghi
)

:= phi (L (G)) and
Lm

(

Ghi
)

:= phi (Lhi (G)). The tuple
(

G, Ghi
)

is called a projected system.

For nonblocking control and hierarchical consistency of the modelled system several
conditions have to be fulfilled. These are marked string acceptance, locally nonblocking,
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liveness, marked string controllability and mutual controllability. Abstract algorithms for
verification of the conditions are also provided in [Sch05b].

In this chapter, the algorithms for verification of marked string acceptance and locally non-
blocking are adopted to the automaton model implemented in this thesis. The algorithms
for verifying Liveness, marked string controllability and mutual controllability are included
in Appendix A.1.

The locally nonblocking algorithm is stated as an example, how to implement an addi-
tional data structure, to support the visualization of states failing the condition in a
graphical environment. The other algorithms are stated in versions that only verify the
respective condition, without providing such additional data structures. However, the
algorithm implementations in the practical part of this thesis all provide data structures
for implementing such a visualization of failed states.

In [Sch05a] an improvement to the algorithm for verification of the locally nonblocking
condition is provided that is incorporated in the implementation. [Sch05a] also provides
data structures for an implementation of the control hierarchy which is not covered in
this thesis.

At first a convenience method for deterministic language projection is presented fol-
lowed by the introduction of entry states.

Deterministic Projection and Entry States

In [Sch05b] an automaton on a lower level in the control hierarchy G is abstracted to
an automaton on a higher level Ghi by a deterministic projection of Σ to Σhi. The deter-
ministic projection is applied by successively calling the function PROJECT, introduced
in Section 4.1.2, and DETERMINE, introduced in Section 4.2.4. Therefore a convenience
function is stated as follows.

1: function DETPROJECT(GeneratorG&, EventSetΣhi, GeneratorGhi
& , Map<Idx,

StateSet> EntryStateMap& )
2: /* local variables */
3: GeneratorGtmp

4: Vector<StateSet> PowerStates
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5: Vector<Idx>DetStates

6: int i

7: /* start */
8: Gtmp := G

9: Project(Gtmp,Σhi)
10: Determine(Gtmp,Ghi,PowerStates,DetStates)
11: for i := 0; i < Size(PowerStates); i := i + 1 do
12: EntryStateMap [DetStates [i]] := PowerStates [i]

13: end for
14: end function

Note that L
(

Ghi
)

= phi (L (G)) and Lm

(

Ghi
)

= phi (Lm (G)).

This convenience function provides the abstraction of an automaton G on a lower lev-
el of the control hierarchy to an automaton Ghi on a higher level by a deterministic
projection of Σ to Σhi. A map, denoted EntryStateMap, from states in the high level
automaton to the corresponding subsets of states in the low-level automaton is created
as a by-product. These subsets are sets of entry states of the low-level automaton, which
are required for the algorithmic verification of the conditions mentioned above. The
formal definition of entry states is given as follows.

Definition 6.0.1 (Entry States [Sch05b]). Let G = (X, Σ, δ, X0, Xm) be an automaton that
is abstracted to an automaton Ghi =

(

Xhi, Σhi, δhi, X0,hi, Xm,hi
)

by a projection phi : Σ∗ →
(

Σhi
)∗. For each state xhi ∈ Xhi a set of low-level entry states Xen,xhi is defined as

Xen,xhi :=
{

x ∈ X | x = δ (x0, sen) for sen ∈ Len,shi

}

⊆ X

with Len,shi :=
{

s ∈ L (G) | phi (s) = shi ∧ @s′ < s s.t. phi (s′) = shi
}

⊆ Σ∗ which is denot-
ed the set of entry strings [dCCK02].

This means when following strings in the low-level automaton and the corresponding
projected strings in the high-level automaton, the entry states in the low level automa-
ton correspond to these states in the high level automaton, where the same sequences
of high level events have been executed with a minimum length of the low level string.
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6.1 Verification of Marked String Acceptance

We assume that a deterministic projected system with
(

G, Ghi
)

is given. Marked string
acceptance guarantees, that all low-level strings s ∈ L (G) which reach the low level
entry states Xen,xhi ∈ X of a marked high level state xhi ∈ Xhi, pass a marked low level
state before a high level event is generated. This condition ensures, that transitions
executed in the low level automaton always reach a marked state when the high level
automaton reaches a marked state, too.

The definition of marked string acceptance is given in [Sch05b].

The following algorithm corresponds to the abstract algorithm in [Sch05b]. However,
the computation of entry states is not required, as this already is a result of the deter-
ministic projection.

Algorithm 6.1 (Marked String Acceptance). Given the projected system as stated above
with an entry state map EntryStateMap that is the result of the deterministic projec-
tion function DETPROJECT. The function MARKEDSTRINGACCEPTANCE returns True
if marked string acceptance is guaranteed for the system and False if not. The helper
function CHECKLOCALMSA checks the property for a single entry state.

1: function MARKEDSTRINGACCEPTANCE(Generator Glo
&, Generator Ghi

& , Map
<Idx,StateSet> EntryStateMap& )

2: /* local variables */
3: StateSetXdone

4: Bool result

5: /* start */
6: for all xm,hi ∈ Xm,hi do
7: for all xentry ∈ EntryStateMap [xm,hi] do
8: result := CheckLocalMSA(Glo,Ghi,Xdone,xentry)
9: if result = False then

10: return False
11: end if
12: end for
13: end for
14: return True
15: end function
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CHECKLOCALMSA returns True if marked string acceptance is guaranteed for the giv-
en entry state and False if not.

1: function CHECKLOCALMSA(Generator Glo
&, Generator Ghi

&, StateSet Xdone
& ,

Idx xentry )
2: /* local variables */
3: Stack<Idx>Xwaiting

4: Idx xcurrent

5: /* start */
6: if xentry /∈ Xdone then
7: Push(Xwaiting,xentry)
8: end if
9: while Xwaiting 6= ∅ do

10: xcurrent := Pop(Xwaiting)
11: if xcurrent /∈ Xm,lo then
12: for all tlo ∈ Transitions(δlo,xcurrent) do
13: if tlo.ev ∈ Σhi then
14: return False
15: end if
16: if tlo.x2 /∈ Xdone then
17: Push(Xwaiting,tlo.x2)
18: end if
19: end for
20: end if
21: end while
22: return True
23: end function

Note that the algorithm can be extended to compute the low level entry states, if a tran-
sition with a high level event is discovered before reaching a marked state by following
invisible transitions backwards. This suggests implementing an additional data struc-
ture, that can store the associations between the bad entry states, the transitions that
fail the marked string test and the corresponding high level state. Such an extended
algorithm with an additional data structure is implemented in the practical part of this
thesis.
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6.2 Verification of the Locally Nonblocking Condition

Given a deterministic projected system
(

G, Ghi
)

. The locally nonblocking condition ver-
ifies, that no local transition path in G starting at a entry state reaches a state, that has
not paths to all high-level events that are reachable in the high-level automaton. If this
is the case then the low level automaton is locally blocking and the system can get stuck
in the lower hierarchy of the system model.

The definition of the locally nonblocking condition is given in [Sch05b].

The algorithm of the MARKEDSTRINGACCEPTANCE function was stated in a simplified
version1, that computes only a boolean result. This algorithm is a detailed example
for the computation of a more verbose result in conjunction with an additional data
structure, that can be used for the visualization of the result in a graphical user interface.

Algorithm 6.2 (Locally Nonblocking). Given the projected system as stated above with
an entry state map EntryStateMap that is the result of the deterministic projection func-
tion DETPROJECT. The function LOCALLYNONBLOCKING then returns True if the lo-
cally nonblocking condition is fulfilled and False if not. The helper functions LOWEX-
ITSTATES, REACHABLEEVENTS and COMPACCREACH are introduced as stated below.

1: function LOCALLYNONBLOCKING(Generator Glo
&, Generator Ghi

&, Map<Idx,
StateSet> EntryStateMap&, Vector<LnbBlockingStates>BlockingResult)

2: /* local variables */
3: Bool result := True
4: TransSet<Idx,StateSet> δlo,r /* reverse sorted low level transition relation */
5: EventSet Σhi,active /* high-level active event set */
6: StateSetXlo,exitstates /* low-level local exit states */
7: StateSetXlo,blockingexitstates /* low-level locally blocking exit states */
8: StateSetXlo,blocking /* low-level locally blocking states */
9: StateSetXlo,accreach /* low-level local accessible reach */

10: StateSetXlo,coaccreach /* low-level local coaccessible reach */
11: StateSetXlo,nonblockingexitstates /* low-level locally nonblocking exit states */
12: /* start */
13: /* iteration over all high-level states */
14: for all xhi ∈ Xhi do
15: /* clear local sets */

1of the implementation in the practical part of the thesis

94



16: Σhi,active := ∅; Xlo,exitstates := ∅; Xlo,blockingexitstates := ∅; Xlo,blocking := ∅

17: Xlo,accreach := ∅; Xlo,coaccreach := ∅; Xlo,nonblockingexitstates := ∅

18: /* compute active high-level event set accumulate and low level exit states */
19: for all thi ∈ Transitions(δhi,xhi) do
20: Σhi,active := Σhi,active ∪ {thi.ev}
21: LOWEXITSTATES(Ghi , δlo,r, EntryStateMap, tlo.x2, Xlo,exitstates)
22: end for
23: if Σhi,active 6= ∅ then
24: continue; /* proceed with next high-level state */
25: end if
26: /* check if local exit states reach all high-level events */
27: for all xlo,exit ∈ Xlo,exitstates do
28: if Σhi,active ⊂ REACHABLEEVENTS(Glo , Ghi, xlo,exit) then
29: Xlo,blockingexitstates := Xlo,blockingexitstates ∪ {xlo,exit}

30: end if
31: end for
32: /* compute locally nonblocking exit states */
33: Xlo,nonblockingexitstates := Xlo,exitstates \ Xlo,blockingexitstates

34: /* accumulate accessible reach of entry states */
35: for all xentry ∈ EntryStateMap [xhi] do
36: COMPACCREACH(Glo , Σhi, Xlo,accreach, xentry)
37: end for
38: /* accumulate coaccessible states for nonblocking exit states */
39: for all xexit ∈ Xlo,blockingexitstates do
40: COMPCOACCREACH(δlo ,r, Σhi, Xlo,coaccreach, xexit)
41: end for
42: /* compute locally blocking states */
43: Xlo,blocking := Xlo,accreach \ Xlo,coaccreach

44: if Xlo,blocking 6= ∅ then
45: result := False /* locally nonblocking test fails */
46: /* add blocking states with high-level state and low-level entry states to result */
47: PushBack(BlockingResult,
48: LnbBlockingStates(xhi,EntryStatesMap [xhi],Xlo,blocking))
49: end if
50: end for
51: return result

52: end function

The LOWEXITSTATES function computes the low-level exit states for a high-level state.
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The definition of local exit states is given by the algorithm.

1: function LOWEXITSTATES(Generator Ghi
& , TransSet<Sortx2evx1> δlo,r

& , Map
<Idx,StateSet> EntryStateMap&, Idx xhi, StateSetX lo,exitstates )

2: /* local variables */
3: for all xentry ∈ EntryStateMap

[

xhi
]

do
4: for all tlo ∈ TransitionsByx2(δlo,r,xentry) do
5: if tlo.ev ∈ Σhi then
6: X lo,exitstates := X lo,exitstates ∪ {tlo.x1}
7: end if
8: end for
9: end for

10: end function

The set of high-level events, that can be reached from a low-level state is computed by
the REACHABLEEVENTS function.

1: function REACHABLEEVENTS(Generator Glo
&, GeneratorGlo

&, Idx xlo )
2: /* local variables */
3: Stack<Idx>Xwaiting

4: EventSet Σreachable

5: StateSetXdone

6: Idx xcurrent

7: /* start */
8: Push(Xwaiting,xlo)
9: Xdone := Xdone ∪

{

xlo
}

10: while Xwaiting 6= ∅ do
11: xcurrent := Pop(Xwaiting)
12: for all tlo ∈ Transitions(δlo,xcurrent) do
13: if tlo.ev ∈ Σhi then
14: Σreachable := Σreachable ∪ {tlo.ev}
15:
16: else if tlo.x2 /∈ Xdone then
17: /* if low-level event and not already in done set */
18: Push(Xwaiting,tlo.x2)
19: Xdone := Xdone ∪ {tlo.x2}
20: end if
21: end for
22: end while
23: return Σreachable

24: end function
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Corresponding to the COMPACCREACH function introduced in Section 4.1.2, that com-
putes the accessible reach of invisible transitions, the COMPCOACCREACH computes
the coaccessible reach. A Sortx2evx1 sorted set of transitions is given for following
transitions backwards.

1: function COMPCOACCREACH(TransSet<Sortx2evx1> deltar
&, EventSet Σhi

& ,
StateSetXcoaccreach

& , Idx xlo )
2: /* local variables */
3: Stack<Idx>Xwaiting

4: Idx xcurrent

5: /* start */
6: Push(Xwaiting,xlo)
7: Xcoaccreach := Xcoaccreach ∪

{

xlo
}

8: while Xwaiting 6= ∅ do
9: xcurrent := Pop(Xwaiting)

10: for all tlo ∈ TransitionsByx2(δr,xcurrent) do
11: if tlo.ev /∈ Σhi ∧ tlo.x1 /∈ Xcoaccreach then
12: Push(Xwaiting,tlo.x1)
13: Xcoaccreach := Xcoaccreach ∪ {tlo.x1}
14: end if
15: end for
16: end while
17: end function

For post processing the resulting locally blocking states a data structure Vector<

LnbBlockingStates> is introduced.

The type LnbBlockingStates is defined as follows:

struct LnbBlockingStates {

Idx HiState /* high level state */

StateSet LowEntries /* low level entry states */

StateSet LowBlocking /* low level blocking states */

};

By holding the high level state and the low level entry states for each set of locally block-
ing states a graphical environment can provide a detailed visualization of the result. In
the practical part of the thesis, such a supporting data structure for storing failed states
is implemented for each of the verification methods in [Sch05b].
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Chapter 7

Conclusions and Outlook

In SCT, computation requires efficient data structures and algorithms. In this thesis,
a software model of an automaton is developed followed by the implementation of
algorithms applied to the software model. The practical part of the thesis consists of an
implementation of a software library for SCT in C++.

As a basis for further discussion the basic concepts of finite automata and regular lan-
guage theory are introduced in Chapter 2, followed by an outline of the main results of
RW control theory.

The software model of a automaton is developed in Chapter 3. At first two abstract
data models of an automaton are introduced, the linked-list model and the set based
model. These abstract models are evaluated by three algorithms, parallel composition,
language projection and subset construction. In addition, the computational complex-
ity of several important data access patterns that occur in inner loops of algorithms is
shown. The evaluation concludes in a decision for the set based model as the evalua-
tion by the projection algorithm has shown a weakness in the linked-list model. In the
subsequent sections important implementation aspects of a set based automaton mod-
el are discussed. The resulting data structure specification is then implemented as the
Generator automaton class abstract data types (ADTs) introduced before.

Following the implementation of the Generator class, algorithms for regular lan-
guages and finite automata are stated in Chapter 4. This includes the language methods
parallel composition, projection and the automata algorithms determine and state space



minimization, computing the equivalent deterministic automaton for a nondeterminis-
tic one and a canonical recognizer for a deterministic automaton, respectively.

In Chapter 5, the automaton data structure is extended to the requirements of supervi-
sory control by specification of another ADT that can hold properties of events. For this
specification, a more general implementation is stated, that can also be used to extend
the Generator class to other approaches. The extended automaton model is then im-
plemented as the cGenerator class. Algorithms for monolithic supervisory control,
implemented by the cGenerator class are stated at the end of the chapter. Here the
algorithmic solution of the basic supervisory control problem is presented.

Chapter 6 introduces implementations of algorithms for hierarchical control of decen-
tralized systems according to the approach provided in [Sch05b]. A by-product of the
deterministic projection, a map of high-level states to their low-level entry states is used
to effectively implement the algorithms.

The practical part, the so called FAUDES software library is the main result of this thesis.
It provides flexible set based data structures for modelling DES, that can be extended
to different theory approaches. All basic automata and language algorithms are imple-
mented. Also an algorithm for efficient monolithic supervisor computation and control-
lability test in the RW control theory is included. In addition all verification algorithms
for the hierarchical and decentralized approach provided in [Sch05b] are implemented,
with data structures for the visualization of the results. Further on the library provides
advanced features for the use as a base library in a graphical user interface. Beside
the implementation of exception handling it provides extensible and user friendly data
structures on top of the base classes for automata memory management in large appli-
cations. The library is also designed to implement mappings between the state indices
of automata, that have been computed in functions and the state indices of function in-
put automata by the usage of globally unique state indices. In addition a simple console
application was developed as an example for using the data structures provided in the
library and for testing purposes.

This software library will be provided to the public for free use under the GNU Lesser
General Public License. It shall encourage external researchers to adopt the library for
their own approaches and contribute to the further development.
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Appendix A

Additional Methods

A.1 Algorithms for Nonblocking Hierarchical Control

A.1.1 Verification of Liveness

The liveness condition guarantees that each state has at least one transition. It is defined
in [Sch05b].

Algorithm A.1 (Liveness). Given an automaton G = (X, Σ, δ, X0, Xm). The function
LIVENESS returns True if the automaton is live and False if not. The states failing the
liveness condition are stored in the reference parameter Xfailed.

1: function LIVENESS(Generator G&, StateSetXfailed
& )

2: for all x ∈ X do
3: if Transitions(δ,x)= ∅ then
4: Xfailed := Xfailed ∪ {x}

5: end if
6: end for
7: if Xfailed = ∅ then
8: return True
9: else

10: return False
11: end if
12: end function
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A.1.2 Verification of Marked String Controllability

The definition of the marked string controllability condition for deterministic projected
systems

(

G, Ghi
)

is given in [Sch05b]. It guarantees that if no high-level event is feasible
in a marked high-level state of Ghi, then the low-level system G still can be controlled
such that nonblocking occurs.

Algorithm A.2 (Marked String Controllability). Given a deterministic projected system
(

G, Ghi
)

and an entry state map EntryStateMap that is the result of the deterministic
projection by the function DETPROJECT. The MARKEDSTRINGCONTROLLABILITY re-
turns True if the marked string controllability condition holds and False if not. The
helper function LOCALAUTOMATON is called to compute a local automaton starting
from a specified entry state. Local automata are defined in [Sch05b].

1: function MARKEDSTRINGCONTROLLABILITY(cGenerator Glo
&, cGenerator Ghi

& ,
Map<Idx,StateSet>EntryStateMap&)

2: /* local variables */
3: Bool result := True
4: cGeneratorGlo,spec := Glo

5: Bool gotucevent /* ”got an uncontrollable event” */
6: cGeneratorGlo,local

7: cGeneratorGlo,sup

8: /* start */
9: TRIM(Glo,spec)

10: for all xm,hi ∈ Xm,hi do
11: gotucevent := False
12: for all thi ∈ Transitions(δhi,xm,hi) do
13: if thi.ev ∈ Σuc,hi then
14: gotucevent := True
15: break /* exit for all loop */
16: end if
17: end for
18: if gotucevent = False then
19: for all xentry ∈ EntryStateMap [xm,hi] do
20: /* compute local automaton */
21: LOCALAUTOMATON(Glo , Σhi, xentry, Glo,local)
22: /* build supervisor from local automaton */
23: SUPCONNB(Glo,local, Glo,spec, Glo,sup)
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24: if Xlo,sup = ∅ then
25: result := False
26: end if
27: end for
28: end if
29: end for
30: return result

31: end function

The LOCALAUTOMATON function computes a local automaton by following transitions
with events t.ev /∈ Σhi in the low level automaton.

1: function LOCALAUTOMATON(cGeneratorGlo
&, EventSetΣhi

& , Idx xentry, cGenerator
Glocal )

2: /* local variables */
3: Idx xcurrent

4: Stack<Idx>Xwaiting

5: /* start */
6: Σlocal := Σ

7: Xlocal := Xlocal ∪ {xentry}

8: X0,local := X0,local ∪ {xentry}

9: Push(Xwaiting,xentry)
10: while Xwaiting 6= ∅ do
11: xcurrent := Pop(Xwaiting)
12: for all tlo.ev /∈ Transitions(δlo,xcurrent) do
13: if tlo.ev /∈ Σhi then
14: if tlo.x2 /∈ Xlocal then
15: Push(Xwaiting,tlo.x2)
16: Xlocal := Xlocal ∪ {tlo.x2}
17: end if
18: SetTransition(δlocal,tlo)
19: end if
20: end for
21: if xcurrent ∈ Xm,lo then
22: Xm,local := Xm,local {xcurrent}

23: end if
24: end while
25: end function
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A.1.3 Verification of Mutual Controllability

The definition of the mutual controllability condition is given in [Sch05b]. It requires
decentralized subsystems of a composed system to agree on the occurrence of shared
uncontrollable events.

Algorithm A.3 (Mutual Controllabilty). Given two automata G1 = (X1, Σ1, δ1, X0,1, Xm,1)

and G2 = (X2, Σ2, δ2, X0,2, Xm,2) with the uncontrollable events Σuc,1 ⊆ Σ1 and Σuc,2 ⊆

Σ2. The function MUTUALCONTROLLABILITY returns True if the automata fulfill the
mutual controllability condition and False if not.

1: function MUTUALCONTROLLABILITY(cGenerator G1
&, cGeneratorG2

&)
2: /* local variables */
3: EventSet Σ12 := Σ1 ∩ Σ2

4: EventSet Σuc,12 := Σuc,1 ∩ Σuc,2

5: Bool result12
6: Bool result21
7: cGeneratorGtmp

8: /* start */
9: if Σuc,12 = ∅ then

10: return True
11: end if
12: /* p−1

21 (p12 (L (G2))) */
13: DETPROJECT(G2 , Σ12, Gtmp)
14: INVPROJECT(Gtmp , Σ1)
15: result12 := CONTROLLABLE(Gtmp , G1, Σuc,12)
16: /* p−1

12 (p21 (L (G1))) */
17: DETPROJECT(G1 , Σ12, Gtmp)
18: INVPROJECT(Gtmp , Σ2)
19: result21 := CONTROLLABLE(Gtmp , G2, Σuc,12)
20: if result12 = True ∧ result21 =True then
21: return True
22: else
23: return False
24: end if
25: end function
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