Friedrich-Alexander-Universitat Erlangen-Nurnberg
Lehrstuhl fir Regelungstechnik

Prof. Dr.-Ing. G. Roppenecker Prof. Dr.-Ing. Th. Moor

Diplomarbeit

Hierarchical Fault Diagnosis for Discrete Event Systems:

Theoretical Development and Application

Als Diplomarbeit

vorgelegt von

Tobias Barthel

Betreuer: Betreuer: Ausgabedatum: 19.12.08
Dr.-Ing. Klaus Schmidt Prof. Dr.-Ing. Th. Moor Abgabedatum: 19.06.09

Tobias Barthel

Diplomarbeit

Hierarchical Fault Diagnosis for Discrete Event Systems:
Theoretical Development and Application

Aufgabenstellung:

The failure diagnosis for discrete event systems (DES) has been an active area of research for
more than 10 years. In the general setting, it is desired to detect the occurrence of
unobservable failure events by comparing partial observations of the system evolution and a
model of the possibly faulty system behaviour. Several approaches to solve this diagnosis
problem have been proposed in the literature.

In this context, the major objective of this thesis is the computational support of existing
failure diagnosis approaches and the development of a novel abstraction-based approach that
can be applied to DES that are composed of multiple subsystems.

In order to address the first task, the libFAUDES software library for DES that was developed
at the Lehrstuhl fir Regelungstechnik, has to be extended by a diagnosis plug-in for the
failure diagnosis of DES. Furthermore, various examples from the literature and new
application examples shall be used to verify the functionality of this diagnosis plug-in.

The efficient abstraction-based controller synthesis techniques for discrete event systems
(DES) that have been developed at the Lehrstuhl fiir Regelungstechnik are the basis for the
second task. Analogous sufficient conditions for the abstraction-based failure diagnosis have
to be established. Furthermore, the applicability of these conditions to practical systems has to
be verified using a Fischertechnik model of a manufacturing system that is available at the
Lehrstuhl fur Regelungstechnik. In addition, algorithmic support for the abstraction-based
failure diagnosis of DES has to be included in the designed diagnosis plug-in.

Es wird ausdrucklich auf die ,,Richtlinien zur Anfertigung von Studien- und Diplomarbeiten*
hingewiesen.

(Prof. Dr.-Ing. Th. Moor) (Dr.-Ing. Klaus Schmidt)

Tobias Barthel

Erklarung

Ich versichere, dass ich die vorliegende Arbeit ohne fremde Hilfe tnmé ®denutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeithregleder &hnlicher Form
noch keiner anderen Prifungsbehdrde vorgelegen hat und veer dils Teil einer Prifungsleis-
tung angenommen wurde. Alle Ausfiihrungen, die wortlich oder sinngebgfddmmen wurden,

sind als solche gekennzeichnet.

Erlangen, den 19. Juni 2009

(Tobias Barthel)

'Danke Oma Helene-Elisabeth! Dein Nusskuchen ist so wunderbar,
dass ich ihn ohne Einschrankung an meine Leser weitergebe!

Tim Malzer

Contents

‘1 Introduction

‘2 Basic Notions and Definitions of Discrete Event Systems

21

Languages e e e e e

2.2 Automata

‘3 Diagnosis with respect to Failure Events

31

The Notion of Diagnosability

3.1.1 Diagnosability

3.1.2 I-Diagnosability

32

The Diaqnosler

33

3.4

Diagnosability Testing

3.3.1 Testing DiaqnosabiIJty

3.3.2 Testing I-Diagnosablility
Implementation in IibFAUDéS

3.4.1 Automata and Sets in IibFAUDES

3.4.2 Diagnoser Structure and Hand‘ling

3.4.3 Diagnosability Tests

‘4 Diagnosability with respect to a Specification

‘4.1 Definition and Testing Procedure

‘4.2 Implementation in IibFAUDéS

‘5 Decentralized Diagnosis

‘5.1 Related Work

5.2 Decentralized Diagnosis for Modular Plant and Specification 41
5.2.1 Decentralized Diagnosability for Individual SubsysLtem 41
5.2.2 Decentralized Diagnosability for the Overall System 44
5.2.3 lllustration of the Conditions in the Decentralized Diagnosability Test . . 45
5.2.4 Computational Complexity 47
‘5.3 Implementation in IibFAUDéS 47
‘6 Application of Decentralized Failure Diagnosis 52
7 Conclusio% 65
67

Chapter 1

Introduction

Many of today’s technical systems and processes can be modelled etaliseents systems
(DES). The DES framework is capable of describing the behavioureitedriven systems such
as manufacturing systems, transportation an¢raystems, as well as communication systems,
to mention but a few.

About two decades ago, Ramadge and Wonham established a fundainaenéabork for the con-
trol of DES in their seminal paper “Supervisory control of a class ofrdiscevent systems” [9].
They use a feedback controller denotedsapervisorto ensure that the system works as spec-
ified. The supervisor observes the events occurring in the systemisatuled the execution of
events according to the specification and its control strategy. Since teevag is only able to
record observable events, unobservable failures occurring in gtensywill not be noted. Thus,
the system might behave in an undesired or unpredictable manner that barcorrected by the
supervisor’s interventions.

To meet this problem, fault detection and isolation became an active areseafich since the
1990S. Sampatlet al.introduced the notion aliagnosability provided conditions for a language

to be diagnosable and presented a systematic procedure for detect@luref évents usingi-
agnosersvhich observe the on-line behaviour of the system under investigatigiifl1Based

on the work of Sampathkt al, further research has been made regarding the procedure of test-
ing a systems diagnosability and Jiagigal. and Yoo and Lafortune presented polynomial-time
algorithms to verify diagnosability of a DES in/[5] and [16], respectively.

Since complex large-scale systems are cumbersome for fault diagnostidsi@mo the fact that
a lot of technical system exhibit a modular or decentralized structurerdaiiagnosis of DESs
composed of multiple subsystems has become a crucial area of inteféssteBtiapproaches were
elaborated in this area. Among them, Qiu and Kumar introduced the noticodidignosability
for plants that are observed by several diagnosers [8] and Zhal introduced the notion of
modular diagnosabilitythat uses local diagnosers dependant on local subsystems [1i#efFur

CHAPTER 1. INTRODUCTION 2

advance to hierarchical fault diagnosis has been made by Su and WW¢hfihwho proposed a
hierarchical computational procedure anghaltiresultional diagnosis approachRecently, Paoli
and Lafortune [6] introducel; -diagnosabilitywith the objective of detecting failure events using
only high-level observations.

In this thesis, a novel approach to decentralized diagnosability is dedkldge present an
abstraction-based method and supply a computational implementation to testghesdiaility
of a system consisting of several subsystems with local specificatioesewhither the construc-
tion of the overall system nor the overall specification is needed.

Based on the basics about formal languages and automata that argqueseChapter 2, diag-
nostics with respect to failure events is introduced in Chapter 3. The natfatignosabilityand
I-diagnosabilityare explained and the construction of a basic diagnoser that can béused
line diagnosis is presented. A method and algorithm for testing diagnosabildypjsex from [5]
and modified for the application to I-diagnosability as well. Finally we presentatgorithmic
implementation of the diagnoser structure and the integration of the diagnosedstiyinto ali-
agnosisplug-in of the libFAUDES software library. (For a short introduction to lIRHDES, see
Chapter 3.4.)

In Chapter 4, we state the notion lahguage diagnosabilitjollowing [8] which defines the di-
agnosability of a system with respect to a specification language and pevetethod to test it.
This method is also implemented using in the diagnosis plug-in.

Based on this, we investigate decentralized diagnosis in Chapter 5. Weuicdrdite notion of

the loop-preserving observeand therewith establish a figcient condition for decentralized di-
agnosability of individual subsystems which is then generalized to detizattaliagnosability

of a overall system. Furthermore, we show that our conditions are aluwggiroach to test de-
centralized diagnosability by illustrating that the violation of these conditionsleésis to the

violation of diagnosability in practical cases. The chapter is concluded vétimthlementation of

the decentralized diagnosis test in the diagnosis plug-in of libFAUDES.

The applicability of the newly developed method is demonstrated in Chapter Gs&evo sub-
systems of a Fischertechnik model of a manufacturing system and peheitast of decentralized
diagnosis using the extended software library.

A conclusion completes the thesis and gives perspectives for possidtedidurther research.

Chapter 2

Basic Notions and Definitions of
Discrete Event Systems

This chapter provides the basic notions and definitions of discrete eystess (DES) that are es-
sential to understand the following chapters. The presented conceptsanly adopted from [3],
and the reader is referred to this reference for further information.

A DES has got aiscretestate space and &avent-driverstate transition mechanism. The discrete
states only change at discrete points in time, and only due to the asynciroocwrrence of
discrete events which are not triggered by time.

A formal way of describing the behaviour of a DES &rguages

2.1 Languages

We denote the finite event SBE {o1,02,...,0m} Of @ DES as amlphabet A sequence of events
taken from this alphabet is callesiring or trace, and theempty stringis denoted by. If sis a
string, the number of events containedsifcounting multiple occurrences of the same event) is
called thelength of sand is denoted bjs.

Definition 2.1 (Language). A language defined over an event 5a$ a set of finite-length strings
formed from events iiX.

Definition 2.2 (Kleene-Closure). The set of all finite strings of elementsXfincluding the empty
stringe is calledKleene-closur®f £ and denoted b*.

In the scope of this thesis, several operations on languages as defibefihition/ 2.1 are needed.
In addition to the usual set operation, such as union, intersection, iackdice with respect o
the following operations are relevant:

CHAPTER 2. BASIC NOTIONS AND DEFINITIONS OF DISCRETE EVENTYSTEMS 4

ConcatenationLet Ly, Lp € X*, thenLglp :={s€ X" | S= 3%, Sa € La, S € Lp).
e Complementtet L C ¥*, then the complement &fis defined as.® =X* - L.

e Prefix-Closure:Let L C =, then the prefix-closuré of L is defined asl = {se€ X* |
Jt e =* such thatste L}. L is said to beprefix-closedf L = L.

e Kleene-closuretetL CcX*, thenL* :={ejULULLULLL...

e Post-languagelet L C ¥* andse L. Then the post-language bfafter s, denoted by /s,
is the languagé/s:= {t € £* | ste L}. By definition,L/s=0if s¢ L.

Next, thenatural projectionis defined according to [10]. This function erases all events from a
stringse T* that do not belong to a given alphaliet

Definition 2.3 (Natural Projection). Given an observation alphab®t T thenatural projection
p:3* - 3* is defined by

E
o foel
e ifogl

p(e)

p(o) :

p(sr) = p(s)p(o) forseX* ando €X.

Given a string from the smaller alphatmst £, theinverse projectiorreturns the set of all strings
se X in the larger alphabet that project, wighto the given string.”

Definition 2.4 (Inverse Projection). GivenX C ¥, theinverse projection p': £* — 2= is defined
as

p (8 =(seZ" | p(s) = 8.

The projectionsp and their inversep™! can be extended to languages by applying them to all
strings in the language. Farc X* the natural projection is defined as

p(L) := {te = |Ise L such thatp(s) = t}

and forL c X the inverse projection is
p (L) := {se€ £ | At € L such thatp(s) = t}.

Note thatp[p~(L)| = L butin general ¢ p~[p(L)].

As it will be needed later in Chapter 5, we define tizdural observers in [4].

CHAPTER 2. BASIC NOTIONS AND DEFINITIONS OF DISCRETE EVENTYSTEMS 5

Definition 2.5 (Natural Observer). Consider the natural projection: * — £*, whereX C 3,
and a regular languadec >*. p is called ari.-observerif for all t € p(L) and for allse L it holds
that

p(s) <t = FJueX* suchthaue L andp(su) =t.

This definition states that if the projection stripg) can be extended tan the smaller alphabet,
then there has to exist an extensiorsaf the original alphabet so that the extended string in the
original alphabet projects to the extensiornpg$) in the smaller alphabet. This observer condition
ensures that the system that is observed by the projeptigii not reach a state with a fierent
future than the observed one.

Since it is not always easy and practical to enumerate all strings in a lgaguaomataare
introduced as a framework for constructing, representing and manigulatiguages.

2.2 Automata

An automaton is a structure capable of representing languages accordimgj-ttefined rules.
First, the definition of the nondeterministic automaton is presented.

Definition 2.6 (Nondeterministic Automaton). A nondeterministic automatongis a five-tuple
Gnd = (X’ 2 U {8}’ 6I"Id9 XO’ Xm),

where X is the set of stateg, U {&} denotes the finite set of events including the empty string,
Snd: X x TU{e} — 2% is the transition functionXy C X is the set of initial states, ang, C X is
the set of marked states.

The transition functionq is in general a partial function on its domain which means that for every
X € X, dnq is only defined for a subset of the alphaketn the following we writednqg(X, o)! to
denote thabnq(x, o) is defined. Thective event functiofi : X — 2% which is the set of all events

o for which 6pq(X, o) is defined, is omitted in this definition because it can easily be derived from
dna- (Given a sefA the notion 2 means the power set of A, i. e., the set of all subsets of

For convenienceiyg is extended to the domailix X*, so that it applies to a stringas well.

Ond(X,Uo) :={z| z € dny(y, o) for some statg € 6,g(X, u)}.

Considering all directed traces of a generator, starting from initial statesamong these only
those that end in a marked state, we can now defingeneratedand marked languages the
connection between automata and languages.

CHAPTER 2. BASIC NOTIONS AND DEFINITIONS OF DISCRETE EVENTYSTEMS 6

Definition 2.7 (Generated and Marked Language).Thegenerated languagef G q is
L(Gng) = {s€ X" | dxe X such thathg(x, s)!}.
Themarked languagef G is

A frequently used special case of the nondeterministic automaton is the desticrantomaton.
It does not have-transitions, and is has just one initial state. Furthermore its transition furiction
maps to a unique successor state.

Definition 2.8 (Deterministic Automaton). A deterministic automaton @ a five-tuple
G = (X’ 27 5, XO’ xm),

where the entries have got the same interpretation as in the definition of tetaomninistic
automaton, with the following two fferences:

1. § is a functions : X x £ — X, which means that in a statec X an evenior € X will only
cause a transition to a unique stateXin

2. Theinitial state % € X is just a single state, and no longer a set of states.

¢ is also recursively extended from domadrnx X to X x ¥, so that it applies to strings as well:
6(x,€) =X
6(x,s0) = f(f(x,9),0) forseXandoeX.
The languages generated and marked by the deterministic auto@arendefined as:
L(G) :={seX" | 6(x0, 9!}
Lm(G) :={s€ L(G) | 6(X0,5) € Xm}.
A language is said to begularif it can be marked by a finite-state automaton.
From the definitions o6, L(G) andL(G) we have that
Lm(G) € Lm(G) € L(G).
Definition 2.9 (Blocking). An automatorG is said to beblockingif
Lm(G) c L(G)
where the set inclusion is proper, amoinblockingwhen

Lm(©) = L(G).

CHAPTER 2. BASIC NOTIONS AND DEFINITIONS OF DISCRETE EVENTYSTEMS 7

If an automaton is blocking,@eadlockor livelockcan happen. A reachable statef an automaton
G is called adeadlockif T'(X) = 0 butx ¢ Xm. A livelockis a set of unmarked states®@fthat forms
a strongly connected component (i. e., the states are reachable froemotier), but with no
transitions going out of the set.

We now introduce several operations on automata that are essentia fyrtbepts discussed in
this thesis.

The parallel compositionrepresents the joint behaviour of two automa&a = (X1,X; U
{e}, 01, Xo1, Xm1) and Gy = (Xo, X2 U {&}, 62, Xo2, Xm2) that are synchronized by means of their
shared events. Thus,shared eventr € 1 N X, U {e} can only be executed, if the two automata
both execute it at the same time. All other events can occur wheneverlpossib

Definition 2.10 (Parallel Composition of Nondeterministic Automata). The parallel composi-
tion of G; andGs; is the automaton

G111 Gz := (X x X2, Z1UZa U{g}, 6, Xo1 X X02, Xm1 X Xm2)

where

01(X1,0) X 82(Xo,07) if o € T'1(X1) NT2(X2)

0 , if I by
51((0,%0),) = 1(X1,0) x {x2} l oel(x)\ 2

{X]_}X52(X2,0') if e F(Xz)\zl

undefined otherwise.

In the case of deterministic autom&a andG,, the parallel composition simplifies to the follow-
ing definition.

Definition 2.11 (Parallel Composition of Deterministic Automata). The parallel composition
of G; andG:; is the automaton

G1 | G2 := (X1 X Xz, E1 U Ey, 6, (Xo1, X02), Xm1 X Xm2)

where

(01(X1,0),02(%2,0)) if o€ T1(x1) NT2(X2)

0 ,0), if T >
5((X0. %0).07) = (61(X1,0), %2) l oeli(x)\ X2

(X1,02(X2,0)) if oel'(x2)\ 21

undefined otherwise.

The parallel composition of languages can be derived from the paratigbasition of automata
as follows:

L(G1) I L(G2) = L(G1IGy)
Lm(G1) I Lm(G2) = Lm(G1 Il G2).

Chapter 3

Diagnosis with respect to Failure Events

In this chapter, diagnosability of DES with respect to failure events is ptedeThe basic concern
is to identify the occurrence, if any, of certain unobservable failuratsvia a DES. Therefore, all
occurring observable events are tracked and the actual state of tamsg®stimated.

3.1 The Notion of Diagnosability

In [12], Sampattet al.introduce two related notions of diagnosability of DES: diagnosability and
I-diagnosability. They present a systematic procedure for detectioisalation of failure events
usingdiagnosersand provide necessary andistient conditions for a language to be diagnosable.
A diagnoser is a finite state automation built from the finite state model of thevaosgystem. It
performs diagnosis while observing the on-line behaviour of the systeerdidinoser states carry
failure information and thus, inspecting these states, occurrences oéfadlan be detected on-line
with a finite delay if the system is diagnosable. In contrast, the verificationeodlidgnosability
property of a system has to be performéilme.

Before being able to define diagnosability according to [12], the followiagions have to be
introduced. LeG = (X,X,4, Xg) be a deterministic finite state automaton. (In following, we often
consider finite state automata, where all states are marked. In that cade, vat include the
marked state in the description explicitly.) The eventsef G is partitioned as

Z:EOUZUO

whereX, represents the set observableevents and, represents the set ohobservablevents.
The observablesvents may be commands issued by the controller, sensor readings difestly a
the execution of the above commands, and changes of sensor reddiagsiobservablevents
may be failure events or other events that cause changes in the systezcorded by sensors.
¥t € X denotes the set of failure events which are to be diagnosed. Without Igesefality, it is

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 9

assumed that; C X, since observable events can be trivially diagnosed. It may be impossible to
diagnose uniquely every possible fault or one may simply be interested witkapd one of a set

of failure events occurred (e. g., if th&ect of a set of failures on the system is the same). Hence,
the set of failure events; is partitioned into disjoint sets corresponding t@elient failure types

i =2f1U---UXZim. (3.2)
II; = {1,...,m} denotes the index set enumerating the partitions. In the following, the siqmes

“a failure of typeF; has occurred” will mean that some event from theXs¢has occurred.

Furthermore, the following assumptions are met for the system under iratgstig

Assumption 3.1 (Liveness).L(G) is live, i.e., there is a transition defined at each skaie X.
This assumption is made for the sake of simplicity.

Assumption 3.2 (No Unobservable Cycles)There does not exist any cycle of unobservable
events inG, i.e.,dn, € N such thatvuste L, se X/, = |9 < no. This ensures thas does not
generate arbitrarily long sequences of unobservable events whidt wolate diagnosability.

Let po be the projectiorp,: X* — X5, and withy € ¥, p[l(y) ={se L] po(s) =y} be the inverse
projection on the languade ss is the final event of trace and the set of all traces &fthat end
in a failure event belonging to the clasg is defined as

Y(Zti) ={soreL|ot eZi).

Giveno € X andse X*, the notatiors € o denotes that is an event irs. If there exists ars € X
such thatr¢ € s, the notionX¢; € s states with slight abuse of notation tfsat W(Z+;) # 0, wheres
is the prefix-closure o$. Additionally, X, is defined as

Xo = {Xo} U{x € X|there is an observable transition leading}o (3.2)

3.1.1 Diagnosability

With the definitions and notions introduced above it is now possible to defigaalability for-
mally. Roughly speaking, a languages diagnosable if, using the record of observed events, it is
possible to detect the occurrence of failures of any type with a finite delay.

Definition 3.1 (Diagnosability). A prefix-closed and live languadeis said to bediagnosable
with respect to the projectiop, and with respect to the partitidi; if the following holds

(Vi eIIf)(An e N)[Vse ¥(Z+)](Vte L/s) [|t|=n = D]
where the diagnosability conditid is

we ptpo(sh] = i cw.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 10

This definition means: Given a traces L that ends in a failure event from the $&%, and any
suficiently long continuatiot of s. The diagnosability conditio® requires that every tracee L
that produces the same record of observable evergssimuld contain a failure event from the
setX¢. Thus, along every continuatidrof sthe occurrence of a failure of tygg can be detected
in at mostn; transitions aftes.

Figure 3.1: Example illustrating diagnosability.

Figure 3.1 depicts a system to illustrate diagnosability. Heje,y, ands are observable events,
while oo is an unobservable event ands, o t2, ando¢3 represent unobservable failure events.
If the failure partition is chosen with¢1 = {01,012} andXZs, = {03}, I. €., it iS not required to
distinguish between failuress; ando 2, then the system is diagnosable with= 2 andn, = 1.

On the other hand, if the failure partition3g1 = {01}, Zt2 = {ot2}, andX¢3 = {ot3}, then the
system is not diagnosable because it is not possible to identify the ooceméfailures,.

3.1.2 I-Diagnosability

I-diagnosability, as presented by Sampattal. in [12], is a relaxed definition of diagnosability
that requires the diagnosability conditid@ only to hold for traces in which the failure event
is followed by certain observabiedicator events associated with the corresponding failure type.
This is useful for systems where a component or a part of the systgmacte®ly, might fail while

the rest of the system is still able to execute an arbitrarily long non-faultg tébout being able

to recognize the failure. If, e.g., in an HVAC (heating, ventilating, and airditioning) system

a valve fails, one might not be able to tell so until the controller tries to operatedlve. To
meet this problem, I-diagnosability requires detection of failures only afeepticurrence of an
indicator event corresponding to the failure. Spoken in the example ofalve,\the indicator
events could be the commanaisen valveandclose valve

LetX, C X, denote the set of indicator events, andllet; — 2* denote the indicator map. The
failure event set is partitioned as in (3.1), with the additional constrainfahatachi = 1,...,m

o102 € X5 = li(of1) = li(ot2).

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 11

The indicator map is extended to failure event sets by defining
[(Z5)=1¢(0f) forany ofeXy.

Hence, a set of observable indicator evdils;) is associated with each failure type

Definition 3.2 (I-Diagnosability). A prefix-closed and live languadeis said to bd-diagnosable
with respect to the projectiop,, the failure partitionll; on X¢, and the indicator map if the
following holds

(Vi els)(An € N)[Vse P(Z1i)](Vtatz € L/s| st € P[1(Z+1i))])

[Itzl = nj = D]
where the diagnosability conditidd is

we ptpo(stitr)] = Zfi € w.

Here,¥[I(Z+;)] denotes the set of all traces bfthat end in an indicator event from the 3gf. It
is required, that the occurrence of a failure event of the fypehich is “some when” followed
by an indicator event from the sH&+;) should be detected in at masttransitions of the system
after the occurrence of the indicator event. So if the failure event ecbut is not followed by a
matching indicator event, I-diagnosability does not require it to be detected.

For an illustration of I-diagnosability, consider the system representeigjime3.1. Given a fail-
ure partitionZs; = {01}, X2 = {of2}, andX¢3 = {ot3} and the indicator evenigX¢1) = {y} and
[(Zf2) = I(Z¢3) = {6}. Then the system is I-diagnosable with= 0 andnz = 0. Note that in this
case |-diagnosability does not require the failure to be identified because the corresponding
indicator evens does not follow the failure event.

3.2 The Diagnoser

We now describe the concept ofleagnoser This automaton is used to perform diagnostics while
observing the on-line behaviour of a syst@nwhich includes all relevant failure events in its
modelling. Sampatket al. show in [12, Section V] that this diagnoser is adequate for on-line
diagnosis of diagnosable and I-diagnosable systems, with or without muklipleels. Since the
concept of multiple failures is only relevant for their diagnosability test (Wiwe are not going

to use), we omit it here.

In the following, the construction procedure of the diagnoser accotdiftR] is presented.

Given the labeN meaningnormal i. e., no failure occurred, the lab&lmeaningambiguougas
explained on p. 13), and; with i € {1,...,m} meaning a failure of typ&; has occurred. Then

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 12

the set of failure labels is defined Ag = {F1,F>,...,Fn} where|IT| = mand the complete set of
possible combinations of labelsAs= {N} U 221VAL

Furthermore, withX, from (3.2), we defing, = 2%*4,

Now the diagnoser for the systdinis the finite state automaton

Gdiag = (Qdiag Zo, diag qgia

where Qgiag, Zo, ddiag: and qgiag are interpreted as usual. The initial sta@ag is defined to be
(x0,{N}) and the transition functiofiiag iS constructed as explained below. The state sagg

is the resulting subset @, composed of the states of the diagnoser that are reachableJgom
underdgiag. Since the state spacgiag of the diagnoser is a subset @f, a stategy of Ggiag is of
the form

Qd = {(X1.11), ..., (Xn.1n)}

wherex € X, and |; € A, i.e., |; is of the form|; = {N}, I; = {A}, i = {Fi,,Fi,.....Fi}, or

li = {AFi,Fi,...,Fi} where in the last two cas€s,io,...,ik} € {1,2,...,m}. The states of the
diagnoserGgiag carry labelled state estimates of the observed system. The labels carrg failur
information and failures are diagnosed by checking these labels. The sidial is defined as

do "= {(¥0, {N})).
Before being able to define the transition functigrRg, we introduce the following functions.

Let Lo(G, X) denote the set of all traces that start at a stated end at the first observable event:
Lo(G,X) ={s€e L(G,X) | s= U, ue X, 0 € o},
whereL (G, x) is the set of all traces that originate from stata G.

Definition 3.3 (Label Propagation Function). Given x € Xq, | € A, ands e Ly(G, X). Thelabel
propagation function LP X, x A xX* — A propagates the labélover s, starting fromx and
following the dynamics o6, i. e., according td.(G, x). It is defined as follows
{N} if | ={N}AVi[Zf ¢ 9]
LP(x.1,9) =3 {A} if | ={A}AVI[Z4i ¢ 9]
{Fi|FjelvZXZsiins} otherwise.
Definition 3.4 (Range Function). Therange function R Qy XXy — Qo is defined as

R(g,0) ={6(X,9),LP(x,1,9) | (x,1) e qA s€ Lo (G, X)}

Definition 3.5 (Label Correction Function). The label correction function LC Qy, — Qg is
defined as
LC(g) = {(x,]) € | x appears only once in all the pairsghu
{(x,{A}Uli1N---Nlik) whenever there exist

two or more pairsX, li1),..., (% li) in g}.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 13

The label correction function assigns the diagnoser state labels. Thadajoered by any state
along a traces indicates the occurrence or non-occurrence when the system mowegstiaoes
and transitions into state

The labelA has to be interpreted as follows. Suppose that for somegtayiag there exist two
pairs 1), (x,1") in R(g,o). This implies that the state could have resulted from a failure event
of a particular type, sa¥;, or not. In this case we attach the lal¥eto denote that there is an
ambiguity. Hence, labe has to be interpreted as meaning “eitkgor notF;” for i € {1,...,m}.

Now the transition functiodgiag: QoxXo — Qo is defined as

02 = ddiag(h,0) = LC[R(0p, 0)]

with o € e4(q1) whereey(qy) is the active event set Ggiag at the statey;:

e = | (P(9)1s€ Lo(G)}

(e

To illustrate the construction of the diagnoser Figure 3.2 depicts an examalsystenG and
its diagnoseGgiag. Herea,,y,6, ando are observable events whibg,o,0¢1,0 12, ando ¢ are
unobservable. The failure partitionig, = {01} andZ¢, = {o2,0¢2}. In the following a state-
label-pair &, 1) will be represented ad for the sake of clarity.

3.3 Diagnosability Testing

In [12], Sampattet al. proposed a necessary andfmient condition to test diagnosability. Their
testing procedure requires the diagnoser to be constructed first andhbeks for ambiguous
states andr;-indeterminatecycles in the diagnoser. In simple terms, the latter are cyclés-of
uncertainstates (i. e., states of the diagnoser that contain state estimates of the sanibestate,
one containing=; in its label, the other not) for which there exists (i) a corresponding cycle of
states in the original generator that caFiyin their labels in the cycle of the diagnoser and (i) a
corresponding cycle of states in the original generator that do ngt Eatin their labels in the
cycle of the diagnoser.

The major disadvantage of the condition presented by Sangpaththat in order to test diagnos-
ability of a system the diagnoser has to be constructed first and the statecdpihe diagnoser is
in the worst case exponential in the cardinality of the state space of thensysidel. Practically
spoken, constructing the diagnoser is cumbersome if afterwards it tuttisad the system is not
diagnosable.

To meet this problem, Jiargt al. [5] and Yoo and Lafortune [16] proposed twdferent tests of
diagnosability that require only polynomial time in the number of states of thersystadel.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 14

]
R

SN 10F1 17F2 9 6N 11F1 14F1F2
(21
=
TF1F2

(b) The DiagnoseGiag.

B 4N 9F1 16F2 20F2

7F1 12AF1

Figure 3.2: Example construction of the diagndSggg from the systen@ [12]. The state names

of Ggiag carry state estimates for the pladt LabelN indicates “normal” and labéf; the occur-
rence of a failure of typé&;. If all state estimates in a diagnoser state name carry unique failure
labels, then the a failure of tydq is identified.

In the following section the diagnosability test according to Jiangl. will be presented and in
Section 3.3.2 we propose a modification of the approach of &aalgwith the objective of testing
[-diagnosability in polynomial-time as well.

3.3.1 Testing Diagnosability

In [5], Jianget al. presented an approach to test a system for diagnosability that doesgnoter
the construction of the diagnoser. The complexity of their method is polynomilakinumber of
states of the system and also polynomial in the number of failure types.

In the following we will demonstrate the algorithm proposed by Jiangl. The systenG under
investigation has to meet the assumptions stated in Chapter 3.1 and additionallyktwiire
notions we define pathin G as a sequence of transitiong,(c1, X2, ..., -1, Xn) such that(x;, o)
exists withs(x;, o) = X1 for all i € {1,...,n—1}. A path is called aycleif x, = x;. LetF = {F;i |

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 15

i=1,2,...,m} denote the set of failure typgs,; £ — ¥ be the failure assignment function for each
evento € £, andpy: ¥ — X be the observation mask. As before, we do not include the marked
state in the description of automata explicitly because we only consider finitastateata, where

all states are marked.

Algorithm 3.1 (Diagnosability Test). For a given systen® = (X, Z, 6, Xg) with an observation
maskp, and a failure assignment functign do the following:

1. Construct a nondeterministic finite state automaByn= (Xo, Xo, do, X3) With language
L(Go) = p(L(G)) as follows:

o Xo={(X f)| xe X U{Xo}, f CF}isthe finite set of states, wheXe = {xe X|6(X,0) =
X, with X" € X, po(c) # €} is the set of states i that can be reached through an
observable transition, anfdis the set of failure types along certain paths fregio x.

e X, the set of observable events, is the set of events labeGfor

e §, is the set of transitionsio((x, f),o) = (X, f’) if and only if there exists a path
(X,01,X1,...,01, %0, 0, X),n> 0 in G such thatvi € {1,2,...,n}, po(oi) = &, po(0) = o,
andf’ = {y(oi) |y (oi) 0,1 <i < n}jU f; otherwisaso((X, f),o) is not defined.

e X3 =(%0,0) € X, is the initial state.
2. ComputeGg = Go || Go = (Xg, Zo, dg, X3), where

o Xa={(x2,X9) | X, X5 € Xo} is the set of states.
e X, is the set of events labels f@y.

e dq is the transition functionsg((x, x3),0) = (¥9,y3) if and only if 55(x],0) = y§ and
5o(X9,0) = ¥3; otherwisesqy((x7, X9), o) is not defined.

o x3=(x5.x9) € Xq is the initial state.

3. Check whether there exists By a cycle ¢l = (X1,01,X2,...,Xn,0n, X1), N > L X =
(L £h, (2, £2)), i = 1,2,...,n, such thatf! + f2. If there exists such a cycle, then the
systemG is not diagnosable; otherwise it is diagnosable.

Theorem 3.1 (Diagnosability). G is diagnosable if and only if for every cyctdin Gy,
cl=(X1,01, X2, Xm0 X1), N>1 %= (0 1,0¢,12), i=12...,n
we havef! = 2,

As it is given in [5], the proof of this theorem is omitted here.

The complexity of the method shown in Algorithm B.1 is

O(IXI* x 2% 1 x |Z,))

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 16

which is polynomial in the number of states@and exponential in the number of failure types
in G. In order to make the complexity polynomial in the number of failure types asneéd that

a system is diagnosable with respect to the failure types{F;|i = 1,2,...,m} if and only if it is
diagnosable with respect to each individual failure tipé = 1,2,...,m. Thus, Algorithm 3.1 can

be appliedm different times to test diagnosability of the syst@€mvith respect to the individual
failure type setF1},...,{Fm}. Now each failure type set is a singleton (a set with just one element),
the complexity of each such test@¥|X|* x 24 x |Z,]) = O(1X|* X |Zo|). The overall complexity of
testing diagnosability of is

O(IX* X [Zol X [F71)

which is polynomial in the number of states of the system and linear in the numif&ituve
types. [5]

To illustrate the test according to Algorithm 3.1 consider the system shown imeF8)3.07, is
an unobservable event and 1,02 are unobservable failure events. [#t= {F1, F2}, ¥(ouo) =
U(oq) =0,i =1,2,3, andy(o+1) = F1,¥(ot2) = F». Here, we will just consider the single failure
type F1 and thus Algorithm 3.1 is only applied fét,. We first deriveG, from G (see Figure 3.4).
For compatibility, we will label states with no failure label withinstead of the empty set. To
obtain Gy, we then compute the parallel composition@§ with itself. In Gy, as depicted in
Figure 3.5, note the self loop at state (4NyFFrom the last step in Algorithm 3.1 it follows that
the systent is not diagnosable with respect to the given failure partition.

However, if the failure types do not have to be distinguished, ¥@rs1) = (o f2) = F, Gg and
Gy result in the automata depicted in Figure|3.6. As there do not exist any ayitleslifferent
failure labels inGq, the systent is now diagnosable with respect to the new failure partition.

Figure 3.3: The systef@.

3.3.2 Testing I-Diagnosablility

The approach of Jiangf al.to test a syster® for diagnosability applies to diagnosability only. In
order to test for I-diagnosability in a similar manner we extend their methodsasilded below.

I-diagnosability requires the detection of a failure (within a bounded numb&ansition) only
if one of its indicator events occurrexdter the failure event. According to [12], the condition of

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS

17

Go

g1

2N

g2

g2

2R

4N

g2

2

g3

4k

g3

2R

5F

Figure 3.4: The nondeterministic automates

IN,IN

g1

Figure 3.5Gg.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 18

02
Go
— 1IN 71 2N o
o3 3
\v/—\
5F
(@) Go. (b) Gy.

Figure 3.6:G4 for a single failure type.

I-diagnosability is violated if there exists two tracgsands, in L(G), that both have the same
observable projection, angi contains a failure event from the failure se; followed by an
indicator event for the sé{X+;) while s, does not contain any event from the ¢t

Thus, we modify Algorithm 3.1 so that traces@q should only be considered after the occurrence
of an indicator event that follows a failure event from the correspanféiilure set. For simplicity,
we only take into account an individual failure > To check for I-diagnosability with respect
toF ={Fj|i=12,...,m one has to perform the following algorithm for &j separately.

Algorithm 3.2 (I-Diagnosability Test for Failure Type F). For a given syster® = (X, Z, 6, Xo)
with an observation masg, and a failure assignment functign do the following:

1. Construct a nondeterministic finite state automaByn= (Xo, Zo, do, X3) With language
L(Go) = p(L(G)) as follows:

o Xo={(X f)|xe X1U{Xo}, f CX¢}isthe finite set of states, whexe = {xe X|§(X,0) =
X, with X" € X, po(c) # €} is the set of states i that can be reached through an
observable transition, anfdis the set of failure types along certain paths fregio x.

e X, the set of observable events, is the set of events labeG,for

e §, is the set of transitionsio((x, f),0) = (X, f’) if and only if there exists a path
(X,01,X1,...,0m, %n,0,X),n>0in G such thatvi € {1,2,...,n}, po(ci) = &, po(0) = T,
andf’ = {y(oy) | ¥(oi) #0,1 < i <n}U f; otherwisesy((X, f),o) is not defined.

e X3 =(%0,0) € X, is the initial state.
2. ComputeGg = Go || Go = (Xd, Zo, dg, X3), where
o Xg={(x,x9) | x],Xx3 € Xo} is the set of states.

e Y, is the set of events labels f&y.

e §q is the set of transitionsig((x],X3),0) = (v,y3) if and only if 55(x?,07) = y7 and
5o(X9, o) = ¥3; otherwisesqy((X7, X9), o) is not defined.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 19

o x3=(x5.x9) € Xq is the initial state.

3. Check whether there exists@y a cycle

cl = (X1, 01, X0, ..., Xn, 0, X1), N > L5 = (O, £1), (2, £2)),i = 1,2,...,n, such thaBlug €
ToZri T With 69(X3,Ug) = xa and fl = F or f2, = F, with 640, Ugind) = Xing =

(X Fihg)s 4> T24)) @andugng is the prefix ofug that ends with the indicator event,

where fl1 # f12. If there exists such a cycle, then the syst@ris not |-diagnosable foF;

otherwise it is I-diagnosable fd.

Before proving that this algorithm works, we first define# — 2* as a map to the correspond-
ing indicator events and provide the following two lemmas that Jetray. [5] derived from the
definitions ofG, andGg.

Lemma 3.1. For the state maching, it holds:
1. L(Go) = Po(L(G)).
2. For every patltr in G, ending with a cycle,
tr = ((X0> 0)’ 0-0, (X19 fl)a ceey (Xk’ fk)7o-k’ ceey (th fn)’ On, (Xk7 fk))’

we have

o fi=fj;foranyiandjin{k,k+1,...,n}.

e Juv' € L(G) such thatpe(u) = 0g...0k-1, Po(V) = ok...on, and
(o) loeuy(o) # 0} ={y(o) o e uvy(o) # 0} = fi.

Lemma 3.2. For every pathr in G4 ending with a cycle,
tr = (X, 070, X1, -+ » X ks X1 - - +» Xns Ty Xk
x = (< £h, (6, £2), i =1,2,...,n, we have
1. there exist two paths; andtr, in G, ending with cycles, namely,

tr1 = ((%0,0), 070, (%1,), ., O £, 0, O, £1), 07, (8, F)),

tr2 = ((%0.0).0°. (1. 2., 08 £, 0B 1), O).
2. fl= fjl andf? = sz foranyi andjin {k.k+1,...,n}.

Now we can define and proof I-diagnosability for a single failure type.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 20

Proposition 3.1 (I-diagnosability of a Single Failure Type). Assume¥E is a singleton with
Fe ={F}and letXg :={o € X |y(o) = F} andZg, = I(F).

G is I-diagnosable foF if and only if for every cyclecl in Gy with

cl = (X010 %,.. ., X0 X1), N> 1 x = (O fH,(x%,f2), i=12..n such that
Aup € T3k, T with 5q(xd,uo) = x and fL, =F or f2, = F, with 64(X3,Uond) = Xind =

xt f1), (%2, f2) andugng is the prefix ofup that ends with the indicator event,
Ind” "Ind Ind> "Ind d

we havef; = fo.

Proof. For the necessity, suppo€ds I-diagnosable, but there exists a cyclén Gy,

cl = (X Tl Xir s> Xn, 0 X), N> ko X = (6 £1),(6%,£2)), i = kk+1,...,n such that
Jup € Tp2, 5 with 690, ug) = X and fl, = F or f2, = F, with 64(X3,Ug,ind) = Xind =
(b g fiL). 02, f2,) andugng is the prefix ofug that ends with the indicator event,

and we havd; # f;.

This implies that there exists a pdthin G4 ending with the cyclel, i. e.,
tr = (Xg’o-o’ Xla LR st Tk, Xk+l cees Xn,O'n, Xk)

Then from Lemma 3.2 we know that there exist two pathsndtr, in G, with

try = ((%0,0), 0, (X, I1), ..., O 1), 0k, O, F1), 0, (1, £1)),
tra = ((X0,0), 0, (X1, F2), ..., 0%, F2), 0k ..., 0, 2),0n, (0, £2)).

Further, from Lemma 3.1, we havkiv;, uxv; € L(G) such that

Po(U1) = Po(U2) = 00, -...0ke1, Po(V1) = Po(V2) = 0k, ..., 0n

and
@) oeu,y(o) 0} ={Y(o) o euvi,y(o) 0t =fi, i=12

Without loss of generality, sincef; # f,, we assumef; = {F}, f, = 0. Since Aug €
X5 XE) X5 with 5d(xg, Ug) = Xk, We can choosa; = ug. For any integeng, we can choose another
integerl such thatjugvy|| > n.. Now we havepg(UzVh) = po(UoVy) andog ¢ UV, o € UpVh,. This
violates I-diagnosability and contradicts the hypothesis. So the necesklty ho

For the stiiciency, suppose for every cyabkin Gg,

cl = (X010, %, X0 X1), N =1 x = (0 fH,(x%,f2), i=12..n such that
Up € Z5Zr Ty with 640G, uo) = x1 and fl, = F or f2, = F, with 64(X3,Ugind) = Xind =
(xt g Fh), (G 4, T2,) andugng is the prefix ofug that ends with the indicator event,

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 21

it holds thatf; = f,. From Definition 3.2 we know that all such cycles satisfy I-diagnosability.

Now let f; # f,. Again, without loss of generality, we assurfie= {F}, f, = 0. From Lemma 3.2
we know that the hypothesis implies that

Vx = (x4, 1,06, f2)) € Xq
Xis

(@) contained in a loop only iflup € i Zg =% with 6d(x8, Up) = X. This case does not violate
I-diagnosability.

(b) not contained in a loop andug € X5 Xg, X with (5d(x8, Ug) = X. The hypothesis further
implies that for any state sequence, (. ...,X) in Gg with x = (X, f.1), (x?, £2)) for 1 <
i <k, if f1# f2forallie{1,2,...,k}, then the length of the state sequence is bounded by
the number of states By, i. €.,k < |X4l.

Now let s be a trace inL(G) with a F-type failure event, i.ey(sf) = F, we claim that
Vv = ste L(G) with [t| > [Xg| - (IX] = 1), Yw € L(G) with po(W) = po(V), there is aF-type
failure event contained iw.

From above, for any statee X4 that can be reached frorxg by executingp(s) in Gy,
we have that any state sequence starting froim Gq, a statey = ((y, f1), (Y2, f2)) € Xq
with f1 = f2 can be reached withifXyq| — 1 steps. This implies thatv = ste L(G) with
[1Po(DIl > |Xgl = 1, Yw € L(G) with po(W) = po(V), there is aF-type failure event contained
in w. Further from the assumption that no unobservable cycles ex{st aach observed
event inpy(t) can be preceded by at mgx{— 1 unobserved events. It follows that for the
tracet above t| < (|po(t)|+1)- (IX| = 1), i. e.,|po(t)] > |x|+‘—1 —1. Soif|t] > |Xg|- (1X| - 1), then

IPo®)l > g —1> 'Xd|‘;8>_<'l‘l) —1=Xq/—1, establishing our claim. It follows from 3.2 th@t

is I-diagnosable.

Note that we have assumed implicitly thXt > 1; otherwise if|X| = 1, then from the as-
sumption of no unobservable loops, no transition labelled by a failure exésts, so that
the system is trivially I-diagnosable.

(c) not contained in a loop antiup € =5 ¢ X5 with 6d(xg, Up) = X. As stated above, any state
sequencexg, Xp,..., %) in Gy with x = (<, 1), (x?, £2)) for 1 <i <k, if f1# f2 Vie
{1,2,...,k}, is bounded byXy| before the system turns into a loop. From the assumption
of liveness ofG, the construction of54 and the assumption of no unobservable loops we
know thatGy is live as well. So, if no indicator event occurs before the system turnsinto
loop we pass on to case (a), otherwise case (b)—both in a bounded mointa@sitions.

So the s#iciency holds. [

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 22

From this I-diagnosability is verified as follows.

Theorem 3.2 (I-Diagnosability). G is I-diagnosable if and only i is I-diagnosable for all
FiE F.

This theorem directly follows from Proposition 3.1 by applying it to all failurpey separately.

To illustrate the test of I-diagnosability as explained in Algorithm| 3.2, congigersystemG
depicted in Figure 3.7ryo is an unobservable event angy, o ¢, are unobservable failure events.
Lety(of1) = F1, ¥(ot2) = F2 andl¢(of1) = o1, I1(0752) = 012

Figure 3.8 and Figure 3.9 display the auton@gandGgq for both failure types. 1164, note that for
failure typeF; there does not exist arffending cycle as described in the last step of Algorithm 3.2
because the indicator evemt; does not occur after the failure event;. Thus, the syster® is
I-diagnosable with respect to failure type.

On the other hand, for failure type, there exists anftending cycle inGy at state (6N,65).
So, I-diagnosability is violated for failure tyge, and it follows from Theorem 3|2 th& is not
I-diagnosable.

5
()

Figure 3.7: Automatos® for illustration of I-diagnosability.

3.4 Implementation in libFAUDES

The diagnosis methods and diagnoser computation as elaborated in thaipres@dions were
integrated in the libFAUDES €+ software library [1] in the scope of this thesis. The library is
based on the Standard Template Library (STL) and implements data struetidrayorithms for
finite automata and regular languages. Sinceférs a powerful plug-in mechanism, the plug-in
diagnosiswas implemented for the integration of the discussed methods in the library.

3.4.1 Automata and Sets in libFAUDES

For better understanding of the diagnosis plug-in, we give a short unttmeh to the automata
classes available in libFAUDES (see also Figure 3.10).

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 23

Go s
o
— 1IN & 2N £
12
(a) G for failure typeFj. (b) Gy for failure typeFi.

Figure 3.8: I-diagnosability test automata for failure type

Typeis the base class for all libFAUDES objects and provides a unifg@nimterface which
supports reading and writing of the object configuration of derivedsekdt inherits’Generator
which is a virtual version of a plain generator with no attributes and is the tlass for all
generators.

TaGeneratorprovides functions that allow read and write access to the core membaents,eve
states and transitions. It is a template class which is indicated by the template {egirarire

its identifier. Template classes enable generic programming techniquesHra@ thus are an
efficient way of defining and modifying properties of classeEGeneratorimplements template
parameters to specify attribute classes for

e aglobal attribute of the generatfmass GlobalAttr)
o state attributegclass StateAttr)
e event attributegclass EventAttr)

e transition attributegclass TransAttr)

The attributes itself are classes derived frattributeVoid AttributeFlags or AttributeCFlags
which inherit from one another in that ordéttributeVoidis the minimal interface an attribute

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 24

Go B
11 012
— 1IN 2N
12
(a) G for failure typeFo. (b) Gy for failure typeF.

Figure 3.9: I-diagnosability test automata for failure type

template parameter must provide and is the base class for all attribute implementstidate-
Flagsprovides additional semantics for boolean flags Atidbute CFlaganoreover models event
controllability and observability properties.

TheTcGeneratolinherits from theTaGeneratorand additionally adds an interface for events with
controllability and observability attributes, i. e., an event can now be cortite|labservable or
forcible. A plain finite state automaton with controllability properties can be modeéledsing

a TcGeneratorwith AttributeCFlagsfor the event attribute parameter aAttributeVoidfor the
other parameters. For convenience, this type is defineGaserator

The libFAUDES library furthermore provides several container classasong them th&aln-
dexSetvhich is a set of indices with attributes, and ffr@NameSetvhich is a set of indices with
symbolic names and attributes. For further information the reader is refierfé].

3.4.2 Diagnoser Structure and Handling

The structure of the diagnoser is defined in the template Gastes::TdiagGeneratoAs all the
classes and functions of the diagnosis plugfidiagGeneratois part of the namespadaudes

Figure 3.10 shows the the inheritance diagram of the didssyGeneratothat is defined as

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 25

‘ faudes:: Type ‘

7'y

‘ faudes::vGenerator ‘

7'y

‘ faudes::TaGenerator< GlobalAttr, StateAttr, EventAttr, TransAttr > ‘

7'y

‘ faudes::TcGenerator< GlobalAttr, StateAttr, EventAttr, TransAttr > ‘

7'y

‘ faudes:: TdiagGenerator< GlobalAttr, StateAttr, EventAttr, TransAttr > ‘

Figure 3.10: Inheritance diagramm of class TdiagGenerator.

template <class GlobalAttr, class StateAttr , class EventAttr, class TransAttr>
class TdiagGenerator :public TcGenerator<GlobalAttr, StateAttr, EventAttr,
TransAttr>.

As its base classékcGeneratorand TaGeneratorit is realized as a template class with the tem-
plate parameterGlobalAttr, StateAttr EventAttr and TransAttr For the standard concept of di-
agnosers we use the configuration illustrated in Figure 3.11.

In the following the remaining classes of the plug-in are introduced.

AttributeFailureTypeMap
7 : AttributeFlags
- /' TaNameSet<AttributeFailureEvents> AttributeFailureEvents
T_dmngnerator Vs mFailureTypeMap; ===--------f==-===""="7 : AttributeFlags
: public TcGenerator | -
<GlobalAttr / EventSet mFailureEvents;
<GlobalAttr, AttributeDiagnoserState EventSet mIndicatorEvents;
§laleAlll‘. ____________ : AttributeFlags
EventAttr, |,
TransAttr> \\\\ TalndexSet<DiagLabelSet> DiagLabelSet
SymbolTable* AN \\\ mDiagnoserStateMap; =~~~ -~ j--=mm . AttributeFlags
mpLabelSymbolTable; . \\\ - - SymbolTable msLabelSymbolTable;
. 1 AttributeC Flags | Idx msLabelN;
\ static Idx msLabelA;
AN static Idx msLabelReIN;
k AttributeFlags static Idx msLabelSpecViolated;
NameSet mDiagLabels;

Figure 3.11: The class structure of a standard diagnoser including theanearlables.

class AttributeFailureEvents
AttributeFailureEventss derived fromAttributeFlagsand has got the twaventSetnember
variablesnFailureEventandmindicatorEventsThey store the set of failure evernig and
the corresponding set of indicator eveBtsfor a particular failure type.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 26

class AttributeFailureTypeMap
The classAttributeFailureTypeMapunites the failure and indicator events for all failure
types. It is derived fronAttributeFlagsand holds the member variabteFailureTypeMap
which is of the typeTaNameSetAttributeFailureEvents. The entries of thilNameSeare
failure type names with objects of cla&ributeFailureEventss attributes. Thugttribute-

FailureTypeMagaptures the complete failure partition and indicator map for a generator. It

is used as the global attribute for our diagnoser.

class DiagLabelSet
This class is derived fromittributeFlagsand provides methods to manipulate its major

member variablenDiagLabels ThisNameSestores the names of the diagnoser state labels

of a particular diagnoser state estimate. The handling is supported by additiembers
as aSymbolTabland several predefined static label names.

class AttributeDiagnoserState
AttributeDiagnoserStataherits fromAttributeFlags It stores a complete diagnoser state
information in its membemDiagnoserStateMaprhis TalndexSetDiagLabelSet maps
the indices of diagnoser state estimates to instancBsaglabelSetshat contain the corre-
sponding state labels. By usiAgtributeDiagnoserStatas state attribute idiagGenerator
we assign the necessary information to every diagnoser state.

Compared td cGeneratorthere are no special requirements for events and transitions in the diag-

noser. Thus, event attributes are provided by the libFAUDES é#asbuteCFlagsand transition
attributes byAttributeVoid

For convenience this presented configuration of a diagnoser is defsokayGenerator

typedef TdiagGeneratokAttributeFailureTypeMap , AttributeDiagnoserState ,
AttributeCFlags , AttributeVoid diagGenerator.

Since the new clas$diagGeneratoris derived fromTcGeneratoy it inherits its structure and
methods (for documentation see [1+€API]). Additionally, TdiagGeneratoprovides methods
to

e add failure types or the whole failure partition, respectively,
e query the failure type of a certain failure event,

e set or read the diagnoser state attributes.

Read and write access to the diagnoser is established with the standardDiESAldken read-
erwriter and is executed by the member functidtsad()and Write(), respectively. All the at-

tribute classes have got the same yeaite mechanism and thus can easily be written to and read

10

11

12

13

14

15

16

17

18

19

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 27

from genfiles. The followinggenfile is a curtailed version of the diagnoser shown in Figure|3.2b.
It illustrates the labelling of state 10, which contains the state estim&teantl 122AF;. The fail-

ure partitionFailure Typegpartitions the failure events in two sets;, andF». Note, that there are
no indicator events, because I-diagnosability is not considered in thispdea

<Generator>
"Diagnoser"

<Alphabet>
</Alphabet>
<States>

10
<GenStateEstimates
-

<DiagLabels>

nEpn

</DiagLabels>

12

<DiagLabels>

"A" "F1"
</DiagLabels>

20 [

21

22

23

</States>

<TransRel>

24 ...

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

</TransRel>
<lnitStates>
</InitStates >

<MarkedStates>
</MarkedStates>

<FailureTypes>
WEp
<FailureEvents>
"sigma_f1"
</FailureEvents>
<IndicatorEvents >
</IndicatorEvents >
=

42

43

44

45

46

47

48

a9

i

w

IS

(4]

(2]

[ee]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS

28

<FailureEvents>

"sigma_f2" "sigma_f2_dash"

</FailureEvents>
<IndicatorEvents >
</IndicatorEvents >
</FailureTypes>

</Generator>

Of course, the single elements of a diagnoser can also be written sepaatglythis following

output could be the failure partition of the example in Chapter 3.1.2.

<FailureTypes>
nEpn
<FailureEvents>
"sigma_f1"
</FailureEvents>
<IndicatorEvents >
"gamma"
</IndicatorEvents >
nED
<FailureEvents>
"sigma_f2"
</FailureEvents>
<IndicatorEvents >
"delta"
</IndicatorEvents >
nEge
<FailureEvents>
"sigma_f3"
</FailureEvents>
<IndicatorEvents >
"delta”
</IndicatorEvents >
</FailureTypes>

Some other functions that do not belong directly to the diagnoser strubtitrare still related to
the diagnosis framework are stored in separate files withidigmgmosis plug-inThe function
void ComputeDiagnoserdonst cGenerato& G, const AttributeFailureTypeMap&

rAttrFTMap , diagGenerator& Gyiag) ;

requires acGeneratorand anAttributeFailureTypeMagas input and from there calculates the
diagnoser according to Chapter 3.2.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 29

3.4.3 Diagnosability Tests

This section describes the implementation of the diagnosability tests in libFAUDES.tle
implementation of the diagnosability test as shown in Chapter 3.1.1 is descriimbthen the
implementation of I-diagnosability as described in Chapter 3.1.2.

Testing for Diagnosability

The main function for testing standard diagnosability of a sysgeis

bool IsDiagnosable ¢onst cGenerato& G, const AttributeFailureTypeMap&
rFailureTypeMap , string& rReport).

It requires a generator, a failure type map and a report string as iapaingters and returns the
test result as a boolean value.

The function IsDiagnosable () then calls MeetsDiagnosabilityAssumptionsgnst cGenerato& G, const
AttributeFailureTypeMap& rFailureTypeMaystring & rReport) to check whether

o all failure and indicator events are part of the generators alphabet,
e all failure events are unobservable,

e Gislive,

e there do not exist cycles of unobservable events.in

If all of these assumptions are met, the diagnosability test as described intiig&.1 is started.
In order to have linear complexity in the number of failure types, the algorittapptied to every
single failure type separately:

1. First, void ComputeGobgonst cGenerato& G, const string& rFailureType,const EventSe&
rFailureEvents ,diagGenerator& Go) iS called to compute generat@,. Starting from the
initial state with label NComputeReachability@etermines the reachable states of the system
G with exactly one observable transition. Is is done by means dépth-first search
(cp. [2]) that is aborted after the first observable event. The failysestyvhich occur on
these traces are tracked and the new state estimates and occurring faikserty stored
as states irs,. This reachability search is done for every new stat&jruntil no further
states inG are reachable.

2. Then, void ComputeGd{onst diagGenerato& Go, map<pair <ldx,ldx>,ldx >& rReverseComposition
Map, cGenerator& Gg) computessy by evaluating the parallel composition @f, with itself.
SinceGy is implemented as eGenerator i. e., its states do not carry any labels, the map-
ping information of the states is stored in thep<pair <ldx,ldx>,Idx> reverseCompositionMap
which can be used for further manipulations.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 30

3. Last, the function bool ExistsEvilCyclesInGd¢Generator& Gq, const diagGenerato Go,
map<pair <ldx,ldx >,ldx >& rReverseCompositionMaonst string& rFailureType,string& rReport)
is called to check if there exist any cycles of statesGinthat correspond to states in
G, with mutually diferent failure labels. Therefore the function parses through the
reverseCompositionMa@nd deletes all states By that correspond to states B, with
the same failure label. Thebol ExistsCycle const cGenerato& G, string& rReport) checks if
there exist any cycles in the remaining automaton. If so, the syGtésnstated not to be
diagnosable.

If, for all failure types, there do not exist anffending cycles i34, the system is diagnosable and
IsDiagnosable (returnstrue, otherwise it is not diagnosable afalseis returned.

Testing for I-Diagnosability

Testing a system for I-diagnosability works pretty similar to the test of diagility. The core
function to run the test is

bool Isldiagnosable ¢tonst cGenerato& G, const AttributeFailureTypeMap&
rFailureTypeMap , string& rReport) .

It requires a generator, a failure type map (which contains both, faihateralicator events for
every failure type) and a report string as input parameters and rehenest result as a boolean

value.

As in the case of normal diagnosability the system has to fulfil the followingragsons which
are checked byool MeetsDiagnosabilityAssumptionsgnst cGenerato& G, constAttributeFailure TypeMapé&

rFailureTypeMap string & rReport).

¢ all failure and indicator events have to be part of the generators alphabe
¢ all failure events have to be unobservable,
e G hasto be live,

e there should not exist any cycles of unobservable evers in

If the system meets these requirements the test for I-diagnosability asbeesier Algorithm 3.2

is started. Since this algorithm is only defined for single failure types, wly &#ptp every failure

type separately. The flierence to the code structure shown before is that in the last step we only
consider traces that start with an indicator event following a failure eVén.is practically done

by pruningGgq such that only those traces remain in the automaton, which can be viewed as an
additional step before the last step. Then, as before, states with Uifefyure labels are deleted

and it is checked if there exist any cycles in the remaining graph.

CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 31

Thus, the code to test for I-diagnosability for an individual failure typegithe following:

1. The generatdB, is calculated byComputeGobs()

2. ComputeGd(compute$sy.

3. Starting for the initial statefrimNonindicatorTracesOfGd@xtracts all traces that start with an
indicator event that follows a failure event. This is done by recursivelgtitig the tran-
sitions in every path oGy until a transition with an indicator event that points to a state

containing a failure label is found.

4. ExistsViolatingCyclesInGd (js called to check if there exist any cycles@g that have unequal
failure labels. If so, the systef@is stated not to be I-diagnosable.

If, for all failure types, there do not exist anytending cycles irGq, the system is I-diagnosable
andisDiagnosable (returnstrue, otherwise it is not I-diagnosable afalseis returned.

32

Chapter 4

Diagnosability with respect to a
Specification

Beyond the diagnosability tests with respect to a failure partition that have fresented in
the last chapter, we are also interested in a method to test a DES’ diagnosaitilitgspect to
a specification language. Testing in the specification language frameworérés flexible than
testing with respect to failure types because now the complete behaviour efstem can be
modelled as desired in a specification language. Every violation of a thispiéan is equivalent
to the occurrence of a global failure. Qiu and Kumar [8] presented tiemof codiagnosability
for systems with several local diagnosers. We will use their definition $omgle diagnoser which
we calldiagnosability with respect to a specificatiand will provide an algorithm to test it.

Note that, in the specification language framework, I-diagnosability is noitefest any more
because one can specify the behaviour of the system after eachdrrigggeparately.

4.1 Definition and Testing Procedure

Given is a systen® and its generated languabéG). The specification languad€ C L is gener-
ated by the specification automatdni. e.,L(H) = K, whereK does not need to be prefix-closed.
Unlike before, in the specification framewogkis allowed to contain deadlocking states and or
cycles of unobservable events.

Definition 4.1 (Language Diagnosability). Given the observation magk: X* — X, a system
G is diagnosable with respect to the specificatiog L(G) if

AneN)(Vse L(G)-K)(¥ste L(G) - K, |t| = n or stdeadlocks)
= (Yue pylpo(st) NL(G), ue L(G)-K).

CHAPTER 4. DIAGNOSABILITY WITH RESPECT TO A SPECIFICATION 33

This definition means the following: Given a strisgn L(G) that violates the specificatidf and
another string such that is a suficiently long extension o§ in the “faulty language” oist is
deadlocking. If every trace ih(G) that is indistinguishable frorstis part of the faulty language
L(G) - K, the systent is said to be diagnosable with respect to the specificaion

Obviously, a strings € L(G) does not violate the specification sfe L(G) || K, but violates the
specification ifse L(G) — K. To verify diagnosability, we now have to check if there exists a string
in L(G) — K that is forever indistinguishable from a stringli{G) || K. The following algorithm is
based on [5] and describes a method to test a sy&téon diagnosability with respect to a given
specificatiorK.

Algorithm 4.1 (Diagnosability test with respect to a specification).For a given system

G = (X Z, 8, Xo Xm) With an observation mas,: £* — X do the following:

1. Construct an automatdd = (X, =, &, Xo, Xm) With L(G) = L(G) andLy(G) = L(G) - K =
L(G)NKE®. Now every trace in.(G) that violates the specification will lead to a marked state
in L(G).

2. FromG, construct a finite state automat6g = (Xo, Zo, do, X3, X5) with language.(G,) =

Po(L(G)) as follows:

e Xo={(xT)|xe XgU{X}, T C{F}} is the finite set of states, whedg = {x € X |
6(X,0) = x, with X' € X, po(0) # &} is the set of states i@ that can be reached through
an observable transition, arfds the label which indicates that a violation of the spec-
ification has occurred.

e X, the set of observable events, is the set of events labeG,for

e §, is the set of transitionsig((X, f),o) = (X, f’) if and only if there exists a path
(X, 01, X1, ...,01, X, 0, X), N> 0in G such tha¥i € {1,2,...,n}, po(ci) = &, Po(o) = o,
f/ =0if X ¢ Xm, f’ = F if X € Xm; otherwiseso((x, f),o) is not defined.

e X3 =(%0,0) € X, is the initial state.
o Xp=0.

3. ComputeGq = Go || Go = (Xd, Zo, dg. X3, X3), where

o Xa={(x],X9) | x,X5 € Xo x Xo} is the set of states.

Y, is the set of events labels fGy.

dq is the set of transitionsig((x], X9), o) = (¥,¥3) if and only if 6o(x],0) = y; and
5o(X9, o) = ¥3; otherwisesqy((X7, X9), o) is not defined.

X3 = (X5, X9) € Xq is the initial state.

Xp =0.

CHAPTER 4. DIAGNOSABILITY WITH RESPECT TO A SPECIFICATION 34

4. Check whether

(a) there exists an unmarked statéSinvith a trace of unobservable transitions that dead-
locks in the marked states Gfor leads to a cycle of unobservable events in the marked
states of3,

(b) there exists a state= (XL, f1),(x2, f2)), 1 # 2, in Ggq, such that inG, statex! or
x? leads with an unobservable trace to a cycle of unobservable events in tkedma
states,

(c) there exists a state= ((x%, f1), (5, f2)) in Gq, such thatf! # f2 and state X, f'),
fl = F,i=1,2 deadlocks irG,,

(d) there exists ifGq a cyclecl = (X, 01, Xo,..., Xn, 0, X1), N> 1, X = (X1 £1), (6, £2)),
i=12,...,n such thatf! # f2.

If any of these exist, the syste@ is not diagnosable with respect to the specificatgn
otherwise it is diagnosable with respect to the specification

To illustrate the test according to the algorithm and the new conditions (aan(bjc) stated in
step 4, consider the following examples. The evertaindo, are unobservable, while the other
events are observable.

Figure 4.1 depicts a syste@and a specification automatehwith L(H) = K € L(G). G marks
L(G) — K which is the part ofL(G) that violates the specificatiok. G, records every violation

of the specification as long as there follows an observable event and lals a failure. The
automatory is the parallel composition @, with itself as before. Since there does not exist any
cycles or deadlocking state as stated in the conditions of the last step in Ahgdrith this system

is diagnosable with respect to the specificatian

As stated in condition (a), diagnosability can be violated, if a system containsteservable trace
that leads from an unmarked state into an unobservable loop and thésktigvthe specification.
In this casé5, andGy do not capture the occurrence of the failure, but it can be identifi€d The
example given in Figure 4.2 shows an unobservable transition with evefiom the unmarked
state 3 inG to an unobservable loop at state 4. This is not detectable for a diagmuseeace this
system is not diagnosable.

An example that violates condition (b) is considered in Figure 4.3. Heres éhésts an unobserv-
able loop in the marked states Gfwhich is reachable through an unobservable trace from the
marked state 5. FroiGy, we know that the specification violation has not yet been identified at
state 5 and thus the systdhis not diagnosable.

To illustrate condition (c), Figure 4.4 depicts the analysis of a sy§&emtich is not diagnosable
because of a deadlocking marked stat&g The deadlocking states (3N,5F) and (5F,3N&in

CHAPTER 4. DIAGNOSABILITY WITH RESPECT TO A SPECIFICATION 35

are evidence of two traces (@,, where one trace is faulty and the other one is not. Since 5F
is deadlocking inG,, diagnosability is violated. Note, that in this example, the self-loop of the
unobservable event,, does not violate diagnosability as it is allowed by the specification.

4.2 Implementation in IbFAUDES

To test a system for diagnosability with respect to a specification, we gdvelfunction

bool IsDiagnosable ¢onst cGenerato& G, const cGenerato& H, string& rReport)

which requires a generat@ and a specification automatdth as input parameters and returns
the test result as boolean. In case of a negative test result, the sogt returns additional
information about the failure condition.

IsDiagnosable (first marks all states i andH. In order to make sure that transitions of events in
G that do not occur in the specification do not violate diagnosability, selfs@bpll those events
are inserted in all states éf.

Next, G with Lm(G) = L(G) — K = L(G) N K¢ is evaluated by computing the parallel composition
of G and the automaton returned bgnguageComplemerd). (Note that the parallel composition
can be used here as equivalent of the language intersection becdlisaitomata have got the
same alphabet.) ThebomputeGobsionst cGenerato& G, diagGenerator& Go) generatess, which is
done in a similar manner as in Chapter 3.4.3 for diagnosability with respect tituee fparti-
tion. As it will be needed for the decentralized diagnosis (cp. Chaptermfsa)nondeterministic
automata with multiple initial states are allowed as input parameters and there edistua
failure label F which is used for every violation of the specification. Ne®t; is calculated
by ComputeGdtonst diagGenerato& G,, map<pair <ldx,ldx >,ldx >& rReverseCompositionMagGenerator&

Gg) Which computes the parallel composition@f with itself and stores the mapping information
in the reverseCompositionMa@s before.

To determine diagnosability the conditions stated in step 4 of Algotithm 4.1 hawedbdzked:

1. bool ExistsViolatingCyclesinGddGenerator& Gg, const diagGenerato& Go,
map<pair <ldx,ldx >,ldx>& rReverseCompositionMagonst string& rFailureType,string& rReport)
checks if there exist any cycles of statesGg that correspond to states B, with
mutually diterent failure labels. Therefore the function deletes all stat€;iand entries
in rReverseCompositionMathat correspond to states @, with the same failure label—the
remaining automaton 0By is now calledGgpruned bool ExistsCycle tonst cGenerato& G,
string& rReport) then checks if there exist any cyclesdq pruned

2. bool IsCompleteonst cGenerato& G,, StateSe& rDeadStatesgxtracts all deadlocking states from
G, and then it is checked whether one of these states carries a failure |&g)iRes This

CHAPTER 4. DIAGNOSABILITY WITH RESPECT TO A SPECIFICATION 36

is done by parsing through the pruné&@verseCompositionMagnd reading the failure labels
of the correspondin, states.

3. To check for unobservable deadlocks in the marked stat&sadfich result from an unob-
servable trace starting in the unmarked states, we firsbatsésComplete¢onst cGenerato&
G, StateSe& rDeadStates)to extract all deadlocking states fro®. Among these, we then
extract the marked states aqdmputeBackwardReachabilitgnst cGenerato& G, const Idx state,
const EventSe& rConsideredEventsStateSe& rReachStatesfinds all states that have unobservable
traces leading to these marked deadlocks. Now we check if there exishargrked states
among the start states of the unobservable traces.

4. To determine if there exists an unobservable cycle that violates didhosa
ity, we first extract all starting states of unobservable cycles Gn Therefore
a copy is made, all observable transitions are deleted a&ydeStartStatesconst
cGenerator& G, StateSe& unobsCycleOriginsjsaves all starting states of cycl@®bsCycleOrigins
Addtionally, ComputeBackwardReachabilitdnst cGenerato& G, const Idx state, const EventSe&
rConsideredEventsStateSe& rReachStatesfinds all states iiS that lead with unobservable traces
to one of these states and adds themntisCycleOriginsNow it has to be checked if any of
the states ininobsCycleOrigins

(a) is not marked i1,

(b) forms part of a state label Bqprunes This is done by parsing though the prunded
rReverseCompositionMaand evaluating the corresponding state labelsof

If any of these tests is positivesDiagnosable (yeturnsfalse otherwisetrue.

CHAPTER 4. DIAGNOSABILITY WITH RESPECT TO A SPECIFICATION 37

H o4
{
OO OSL OO

(b) The specification automatdhwith L(H) = K. [8]

&; ,

(d) The diagnose®, represents the observable behaviouGafnd imple-

6F

ments every transition into a marked state as a failure F.

(e) The automatoy = Go || Go.

Figure 4.1: Diagnosability test automata for the syst@mvith respect to the specificatidd =
L(H). G is diagnosable because none of the conditions of the last step of Algorithmfdlfilled.

CHAPTER 4. DIAGNOSABILITY WITH RESPECT TO A SPECIFICATION 38

(c) The generatd®.

Figure 4.2: Test of diagnosability of syst&bwith respect t&K = L(H). There exists an unobserv-
able violation of the specification and th@gs not diagnosable.

H

O O O OO

(b) The specification automatdth.

(d) The automatof®sy.

Figure 4.3: Test of diagnosability of systegnwith respect toK = L(H). There exists an unob-
servable cycle in the marked state<fhat has an unobservable origin at state 5. Since state 5 is
ambiguous irGy (cp. states (3N,5F) and (5F,3NB,is not diagnosable with respectko

CHAPTER 4. DIAGNOSABILITY WITH RESPECT TO A SPECIFICATION 39

Ouo Y

(b) The specification automatdih.

Y
© . -

3N

— 1IN

ZN/IB'
\&‘

(c) The generatoB. (d) The diagnoseB,.

5F

(e) The automatof®y.

Figure 4.4: Diagnosability test of the Systé&n There exists a deadlock at state 5dp. From
Gy, the system status is uncertain at the deadlock because of the ambiguesg3%g5F) and
(5F,3N). Hence, the syste@is not diagnosable with respectko

40

Chapter 5

Decentralized Diagnosis

So far, we looked at methods to determine diagnosability for an entire systbramentire failure
partition or an entire specification. For large-scale plants, these ap®have the drawback that
their algorithms become computationally infeasible. Therefore, it stands 4orréa extend the
notion of diagnosability for modular plants and plants divided into subsystessectively.

In this chapter we will proposédecentralized diagnosis for local specificatiassa method for an
abstraction based failure diagnosis of DES.

5.1 Related Work

In [8], Qiu et al. presented the notion afodiagnosability It applies to a global representation
of the plantG which is observed byn local diagnosers with respect to a global specificaon
Each local diagnoser uses its own observations of the system and no odatimn between the
diagnosers is needed. Codiagnosability requires that any violation gi¢ledisation is detectable
within a bounded number of transitions Gf by at least one local diagnoser. The authors also
introduce codiagnosability in the failure event framework and presentym@mial algorithm to
test for codiagnosability. Furthermore they extend their notiostitang codiagnosabilityvhich
additionally requires the detection of non-faulty traces within a bounded auailransitions.

Zhouet al. [17] focus on a modular plant observed with regards to a global spatadiic They
introduce the notion ofmodular diagnosabilitythat allows to diagnose every failure using a set
of local diagnosers. The computation of these diagnosers only deperilds local subplants and
thus does not require the construction of the global plant model. A systesstesd for modular
diagnosability by reducing it to codiagnosability, hence the constructioreaitbrall plant model

is needed for testing procedure.

CHAPTER 5. DECENTRALIZED DIAGNOSIS 41

5.2 Decentralized Diagnosis for Modular Plant and Specification

Consider a modular plant that consistsw$ubplantss; = (X, %, di, Xo,), i € 7 :={1,...,m} over
the alphabetg; such that the overall plai@ = (X, Z, 6, Xp) is defined a$5 := ||icsGj. We havem
locally diagnosability specificatiort§ € X, i € 7 such that the overall diagnosability specification
evaluates tK = ||icrK;.

We now want to verify diagnosability @ with respect ta&K without having to evaluaté andK.

5.2.1 Decentralized Diagnosability for Individual Subsytem

We present a method that allows to conclude diagnosabilitgfinom a local computation. In
summary, we evaluate an abstraction of the local plant that incorporatestibeiour of the other
subsystems. In this abstraction, we replace all transitions of events that flwm part of the local
alphabet by-transitions and compute the parallel compositions of the original local pliémtive
abstraction. Hereby, we get another version of the local plant (withuallysbigger state space)
that on its part also captures the behaviour of the other subsystems. Witieetized version of
the language diagnosability notion, we are then able to verify decentraliagdasability for the
local plant and its local specification.

To begin with, define := U jer,ixj(Zi N Zj) as theset of shared eventnd the corresponding
local sets of shared event, = X, NZj, i € 7. We define a version of the L-observer condition
in [15].

Definition 5.1 (Loop-preserving Observer). Let p: £* — £* be the natural projection f& c T
and letG be an automaton. Themis a loop-preserving observer fb(G) with the bound\ if for
all se L(G) andt e £

p(9)t € p(L(G)) = Fu € ¥* such thasue L(G) andp(su) = p(s)t
and for all suchy, |u] < N|t].

This definition states the following: Given a trasgenerated by the system and a tragéthin

the abstraction language. Then, the natural projegbigsma loop-free observer with bound if

for all extensions of the abstracted tregia the abstraction language it holds that there also exists
an extensiom in the system’s language such that in the abstractiopyojects onto the extended
string in the abstraction. Additionally; is bounded byu| < N|t|. Hence, the extensiomin the
system’s language cannot be arbitrarily long and it follows, that evegyilothe system also has

to appear in the abstraction.

Now, we select one particular pla@y, j € 7 and writelj := 7 —{j} andGy, := ||ir21i¢jGi over the

alphabety, := Uier; Zi for the composition of the remaining components. Then, we define the
alphabetg;; D = that are as small as possible but such that the natural projegiios — ii*

CHAPTER 5. DECENTRALIZED DIAGNOSIS 42

are loop-preserving observers for the local plaBtsi € 7. The overall abstraction alphabet is
27, 1= Uier, Zi, the overall natural projection isy;: - i}j. The abstractioG;, overX;, of

the remaining plan®y; is computed by evaluating
L(Gr;) = P(L(G1)) = llier; Pi(L(G1))-

We use loop-preserving observers for the abstraction of the localspgBani € 7, in order to
ensure that the system’s local loops that could violate diagnosability byigxga@rbitrarily long
strings are incorporated in the abstraction.

It holds thatpy, is a loop-preserving observer if g, i € I'j are loop-preserving observers.

Lemma 5.1 (Loop-preserving Observer).Fori € I}, let G; be automata over the alphalit
and define the natural projectiops: = — 7 for % C 3. Also letGy,, X7, and py, be defined
as above. Thepy; is a loop-preserving observer fGi;; with the boundNy, := Yicr, Ni if piis a
loop-preserving observer f@; with the bound\; fori € 7.

Proof. Assume thap; is a loop-preserving observer f@; for i € 7 and letse L(Gy)), t € i}j
such thatp(s)t € p(L(Gz))- It has to be shown that there isc =* such thatsue L(Gy;) and
p(su) = p(s)t, and that for all such, [u] < Nz, [t].

Sincese L(Gy)), s :=6i(s) € L(Gi) fori € 7. Similarly, witht; := 6i(1), pi(s)ti € pi(L(Gi)). Hence,
for all i, there is auj € X such thatsu; € L(Gj) and pi(su) = pi(s)ti. Then,llie_rj Ui # 0 and there
is U € [lier; Ui such thatp(u) = t. It remains to show that for all sueh Ju] < Ny, [t|. By assumption,
we know that for alli, |ui| < Nilti|. Furthermorey € |licz,Ui implies that|u| < Yier, luil. Hence,
Ul < Zier; Niltil < Zier, Niftl = Nz, [t]. n

We now derive a method to find a substitute for a chosen sub@arnhat incorporates the
behaviour of the other subplants. Therefore, a the nondeterministic aototda = (Q;, X U
{€}, vi, Qo,i, Xm,) is computed for the chosen subpl&@tby the following procedure.

Algorithm 5.1 (Computation of Hj).

1. Find an alphabeX; 2 = which is as small as possible but such tpat I - i’j is an
L-observer (loop-preserving observer is not required).

2. Compute5; such that (G;) = pj(L(G))) and the overall abstractidd := G; || Gy,

3. Determine the local view o for the local plantG;. Therefore, compute the automaton
H; from G by replacing all transitions i with events that are not iB; by s-transitions.
Hence, the transition structure and the state spa¢g @ the same as fa. However,H;
can be nondeterministic due to thdransitions.

4. DefineH; := G| || H;. Hence, using;, the behaviour of the other local plants is incorporated
in Hj.

CHAPTER 5. DECENTRALIZED DIAGNOSIS 43

We suggest to usdj and the local specificatioli; to perform the diagnosability check. Sinklg

is nondeterministic, we propose a generalization of the diagnosability condiiorformulation
holds for a general nondeterministic automaBont incorporates the fact that multiple states with
different futures can be reached after each string(@). Then, in order to be diagnosable, all
possible futures in the nondeterministic automa®have to fulfil diagnosability. Note that this
condition reduces to Definition 4.1 if the automat®iis deterministic.

Definition 5.2 (Generalized Language Diagnosability) Define the natural projectiopy: ** —
X5 for Xo € Z. G is generalized diagnosable with respecKtd

AneN)(Vse L(G) - K)(¥x € 6(xo, 9))(Vt such that(x,t)!, |t| > n or stdeadlocks)
= (Yu e pglpo(st) such thas(xg, u)! for somexg € Xo, u ¢ K)

UsingH; and Definition 5.2, we now provide affigient condition for decentralized diagnosability
for an individual subsystem.

Proposition 5.1 (Decentralized Diagnosability for individual subsystm). AssumeH; is con-
structed as described above. It holds tBats diagnosable with respect fq =Kj I L(G) if

(a) Hj is generalized diagnosable with respecKtcand

(b) every cycle iG contains at least one eventﬁrp.

Proof. First, we introduce several natural projections needed in the pppoE; — ii*, 6. -
S0 S S X poit I o 25,001 oo Tk, Pl I 5 T with £1=3 U Here 3o) i=2NZ,
is the local set of observable events.

We assume thé is generalized diagnosable with respecHto= G; || H; and want to show that
G is diagnosable with respect K. Let se L(G) - K; and choos@;:= n; -|X|, wheren; is taken
from the generalized diagnosability testiof andH; and|X] is the state count d&. Now assume
thatste L(G) and|t| > n; or stdeadlocks buliu e P 1po(st) N L(G) such thau e R,-, i.e.,Gis not

diagnosable with respect .

If [t| > N;, sincenj = n;-[X|, t passes at least; cycles inG. Then it must hold that at least one
event inX; must occur in each such cycle. Assume the contrary. Then, the cyclecontgins
events inx —X;. Then, for alli € 7; such that the cycle contains eventsinit holds that there
are corresponding cycles@. Since allp; fori € 7j are loop-preserving observers, the respective
cycles must also appear in the associ@edut then, a corresponding cycle with events only in
7, —Zj must exist inGy,, which also implies the existence of a cycle with events only

in G. But this contradicts the assumption that each cyclé imust contain at least one event in
3. Hence, each cycle iB must contain events ig;.

Sincet passes at least, cycles inG, this implies that; := 6;(t) contains at least; events inX;,
i.e., [tjl > n;. Furthermore, it follows fronf := p(t) € G and pj(t;) = 6;(f), and the construction

CHAPTER 5. DECENTRALIZED DIAGNOSIS 44

of H; from G thatt; € Hj = G| || H;. In addition, it holds thas; := 6;(s) € L(H;) - Kj, andu e
PetPo(sh N L(G), while u e K; implies thatu; := 6;(u) € pg’ljpo,j(sjtj) N L(H;) (concluded from
ue ej‘lpg’lj Po.j0j(U) = Gj‘lpgjeo,j Po(U) = Hj‘l pg’ljeo,j Po(St) = Gj‘lpgj Po.j9j(sh) andu; € K. Now
let g € vj(do,j,Sj) such thatgy; € vj(q,t;) exists (both states exist sinsgtj € L(H;)). Hence, for
[tj| > nj, we have aj € vj(do,j, 5j) such thatvj(qg,t))! but there is auj € py%po,j(sjt;) such that
vj(do,j»Uj)! andu;j € K;, which contradicts thatl; is generalized diagnosable with respecKto

If stdeadlocks irG, it can be shown that alsd := p(s)p(t) deadlocks in5. Assume that there is
o € 3 such thatsfo € L(G). Then, there must beac =* such thatstwr € L(G) because is an
L(G)-observer, which contradicts thsitdeadlocks irG. Definex:= (%o, &) as the corresponding
deadlock state ii5. Furthermore, sincet e ej‘l(sjtj) deadlocks inG, it must hold that either
(i) Ao € X - X such thatsjtjo € L(G;j) or (i) for all o € ¥ such thatsjtjo € L(G;j), there is a
k# j with o € Z but sco ¢ L(Gk). We denote the corresponding statésipasx; = 6j(Xo,j, Sjtj)-
We now consider the parallel composition®f ande, while respecting the construction bAIfJ
from G. Itis readily observed that the statq,() is reachable idj = G; || H;, asd;(&) = pj(sit;)-

In addition, ;,X) is a deadlock state iRlj since neither further events Ky —ij (case (i)) nor
further events ilij (case (ii)) are possible. From above, we recall that at the samaifira®;(u) €
pc‘)’ljpo,j(sjtj)n L(H;) andu; € Kj. Now, there are two cases.|tf| > nj, the above discussion for
It > nj shows that diagnosability d{; for G holds. Otherwise, we choosg € vj(o,j, Sj) such
that (xj,X) € vj(q;,t;). Hence,q; € vj(0o,j, Sj) and ;,X) € vj(do,j, Sitj) deadlocks inHj, while
uj € pgj Po,j(Sjtj) such that/j(qo,j, u;)! andu; € Kj. Again, this contradicts thad; is generalized
diagnosable with respect ;.

Together, it holds thak must be diagnosable with respectlftp |

5.2.2 Decentralized Diagnosability for the Overall System

Combining decentralized diagnosability for all local pla@{sand specification;, we can state
a suficient condition for decentralized diagnosability for= |I, K; andG := ||, G;.

Theorem 5.1 (Decentralized Diagnosability) Assume thaK := ||, K; andG := ||, G; are given
as above. The® is diagnosable with respect kif Proposition 5.1 holds for alle 7.

Proof. Let se L(G) - K and choose := max fii, whereri is taken from the proof of Proposi-
tion[5.1. Now assume that X* such thatste L(G) and either (i)t| > nor (ii) stdeadlocks. Also
letu e pgtpo(st) N L(G). To prove diagnosability, we have to show that L(G) — K.

First observe thase L(G) - K = ||, L(Gi) —|I™, K implies that for soma, s; ¢ Ej =K || L(G).

Now assume that (i) holds, i. est€ L(G) and|t| > n but there isu € pzlpo(st) NL(G)NK, i.e.,
G is not diagnosable with respect ka Then,u € pgpo(st) N L(G) mej‘l(Kj) = potpo(sh NKj,

CHAPTER 5. DECENTRALIZED DIAGNOSIS 45

while [t| > n> ;. But this means thdb is not diagnosable with respectr&q, which contradicts
the assumption that Proposition 5.1 holds for

Finally assume that (ii) holds, i. est€ L(G) deadlocks but there ise p3lpo(s) NL(G)NK, i.e.,
G is not diagnosable with respect ka Again, u € pg*po(st) N L(G) mé’j‘l(Rj) = Palpo(st) mE,—,
while stdeadlocks. But this means thatis not diagnosable with respectrﬁq, which contradicts
the assumption that Proposition 5.1 holds for n

5.2.3 lllustration of the Conditions in the Decentralized Dagnosability Test

We now provide several examples to illustrate the relevance of the conditigklgorithm[5.1
and Proposition 5.1 within our method to validate a system’s decentralized distujlity.

In the following, we call a subsyste@ locally diagnosabléf it holds thatG; is diagnosable with
respect to its local specificatidf) according to Definition 4.1. The specificati&ns generated by
an automaton denoted @si. e.,L(C) = K. Additionally, all events are assumed to be observable,
exceptos which is unobservable.

Gl GZ
O e T

(a) The local subsystef@; . (b) The local subsystei@,.

—(==

~_ o «
(c) The local specification automa- (d) The local specification automat@a.
tonCy.
Gdiag a

O
—» IN B N 2 s IN2F—2 s 1FoF B 2F
~ B - & A

(e) The diagnoseBgiag of Gy.

(f) The overall systen® = G1 || Go.

Figure 5.1: Even thougB®; andG, are locally diagnosable, decentralized diagnosability does not
hold forG = G4 || G2 becausé&s; inhibits the detection of the specification violation®f.

CHAPTER 5. DECENTRALIZED DIAGNOSIS 46

Firstly, we show that not including the behaviour of the other subsystentisebgbstraction pro-
cedure can lead to a wrong test result. In other words, local diagitibsab all subsystems is
not suficient for decentralized diagnosability of the overall system in our ajgprd@onsider a
systemG consisting of two subsystent®; andG; as depicted in Figure 5.1a and (b). The speci-
ficationsK; andK; are chosen as given in Figure 5.1c and (d). For simpli&ify= L(G>) so that
local diagnosability trivially holds fo,. From Definitioni 4.1 we know thd®; is locally diag-
nosable with respect t§;. A violation of K1 is identified as soon as occurs twice in a row (cp.
Guiag in Figure 5.1e). However, from the overall system behaviour modellejur&5.1f we can
see thats, inhibits the repeated execution @fafter the occurrence af;. Hence, decentralized
diagnosability does not hold for the overall systém

Secondly, we illustrate the necessity that the abstractions of the subsystdraatzservers. There-
fore, consider the systefa consisting of the subsyster® andG, as shown in Figure 5.2. De-
centralized diagnosability works f@; with respect t&K; andG, is assumed to be trivially diag-
nosable. Fo6, the local set of shared eventgis, = {«,y} and gets extended 0= {a,v,l,0¢}

so thatps : - i; is an L-observer. FOB,, the abstraction alphabet is chosefi@& {a,y}and
therewithp,: - i; is notan L-observer. Hencé, I3|1, H1 do not incorporaté-transitions and

the overall systen® = G || G, is wrongly stated to be decentralized diagnosable. But from the
overall system behaviour (Figure 5/2g), one can see that the deemjéekansitions inhibits the
detection ofr; sincey cannot occur any more. Thus, the sysris not diagnosable because the
abstraction of5 is not an L-observer.

Thirdly, the systenG depicted in Figure 5!3 shows the necessity of a loop-preserving abstractio
Its subsystem&, andG, have got the local specificatiotg andKs,. G; is locally diagnosable
with respect toK; and K, can be chosen freely so th@p is locally diagnosable as well. The
abstraction alphabet @ is chosert, = {B}, thuspz: X5 — i; is not a loop-preserving observer
(i. e., there exists a local loop (&, which is not observed by the abstraction). The diagnosability
test procedure states that this system is diagnosable, even though &awetfall system be-
haviour it is obvious that the system is not diagnosable because of tHeaelbf y at state 5
which is not incorporated ;.

Fourthly, we illustrate the need of condition (b) in Proposition 5.1 which reguvery cycle in

G to contain at least one eventfi]. Figurel 5.4 depicts a modular systénconsisting of two
subsystem&; andG,, whereG; is assumed to be decentralized diagnosable (e. g., by is choosing
Kz = L(Gy)). We now look at the test of decentralized diagnosability @r The abstraction
alphabets arél ={l} andig = {B,¢} such that the abstractions result@@ andéz, wherep; is

an L-observer ang; is a loop-preserving observé&.andH; result from Algorithm 5.1 andt; is
generalized diagnosable with respecktp However,G contains &3 self-loop and3 ¢ £1. From

the overall system behaviour (h) one can see that the cycle contgiringtates 7 and 8 inhibits
diagnosability after the occurrence ®f.

CHAPTER 5. DECENTRALIZED DIAGNOSIS 47

5.2.4 Computational Complexity

With regards to the computational complexity the test for decentralized dialgiiosrequires the
computation oH; which needs

e computation of observers for alE 7 (polynomial),

parallel composition to obtait (product state space of the abstractions, usually much

smaller than original automata),

replacement by-transitions (linear in number of transitions @y,

check if cycles irs without events ir%; exist (linear in number of transitions and states),

parallel compositioii; || |:|j (product state space Cﬁ‘ande),

and diagnosability test fdf; with respect tK; as proposed in_[7] (see also Chapter 4) which is
polynomial as well.

5.3 Implementation in libFAUDES

The test for decentralized diagnosis of a modular paebnsisting ofm subplantsG;, j € 7, is
called by

bool IsDecentralizedDiagnosablepnst vector<cGenerator>& G, const
vector<cGenerator>& K, const vector<EventSet-& %, string& rReport).

For every subsystei@j, j € 7, this function

1. creates the avector<cGenerator- G; that contains all the other subsystems, and a
vector<EventSet-& 3; containing all other abstraction alphabets.

2. invokes bool IsDecentralizedDiagnosablednst cGenerato& Gj, const cGenerato& Kj, const
vector<cGenerator-& G;, const vectoxkEventSet-& 3, string& rReport). This function
(a) verifies a loop-preserving observer for evety
(b) evaluateéfj which is the parallel composition of the abstractions ofzll
(c) compose&r; as the union of alk;

(d) calls bool IsDecentralizedDiagnosablegnst cGenerato& Gj, const cGenerato& K, const

cGenerator& Gy, const EventSe& X7 , string& rReport). This function then
o findsZ; and compute§;, G, H; andH; as described in Algorithm 5.1,

e checks if every cycle i contains at least one eventin,

CHAPTER 5. DECENTRALIZED DIAGNOSIS 48

e callsbool IsDiagnosabledonst cGenerato& Hj, const cGenerato& Kj, string& rReport) t0
check ifHj is diagnosable with respect kg,

and returns the diagnosability property as a boolean value.

If decentralized diagnosability holds for every subsys@mwith respect to its local specification
Kj, then it also holds for the overall syst&bwith respect ta andtrueis returned; otherwise the
result isfalse

CHAPTER 5. DECENTRALIZED DIAGNOSIS 49

G1 a C, G, 0 o
ST) e e

(a) The subsyster@;. (b) The specificatioCy. (c) The subsyster@,.

Gy N A
OSRORO

(d) G1 is an L-observer 06;. (e)Gy is not an L-observer of (G =Hy=Hy.
G,.

(9) The overall systers = G4 || G».

Figure 5.2: Example illustrating necessity of L-observer condit®rnandG, are locally diagnos-
able, butG, is not an L-observer oB,. Thus, thes-transition deadlocks in the overall Systén
and this violates diagnosability.

CHAPTER 5. DECENTRALIZED DIAGNOSIS 50

G1 C1 Gz ()
WSO

(a) The subsystei®;. (b) The specification automa- (c) The subsyster@s,.
tonCy.
A 3 G, B
1 i H
a ot
(d) Gy. (e)G2. () Hi.

(9)G=G1Gz.

Figure 5.3: Example illustrating necessity of abstractions that are loopfpieg observersp, is
not a loop-preserving observer and thds does not contain the-loop that violates diagnosability
in the overall systen®; || G».

CHAPTER 5. DECENTRALIZED DIAGNOSIS 51

Gy Ci1 G
—(Co®) ()

(a) The subsyster@;. (b) The specification automa- (c) The subsyster@,.
tonCy.
R B
3 G2 H
1
G1 N o
4 ©

(d) Gs. (e)Gy. (9) H1.

(h) The overall systerts.

Figure 5.4: Example illustrating the necessity of the condition that loogshould contain an
Event fromZ;. G, is assumed to be decentralized diagnosableHinis generalized diagnosable
with respect toKy, but there exists & self-loop inG andg ¢ £1. From (h) one can see that the
cycle of 3 andy at states 7 and 8 violates diagnosability.

52

Chapter 6

Application of Decentralized Failure
Diagnosis to a Fischertechnik Model of
an Automated Manufacturing System

In this chapter we apply the approach of testing decentralized diagnoséimlithas been devel-
oped in Chapter 5 to two subsystems of a Fischertechnik simulation model wlaehiiable at

the Chair of Automatic Controllt represents a distributed manufacturing system consisting of a
stack feeder, conveyor belts, pushers, rotary tables, productilsrecel a rail transport system.
The Fischertechnik model processes workpieces that are symbolizeablolen blocks. The man-
ufacturing process starts from the stack feeder which delivers thkdioche first conveyor belt.
Figure 6.1 shows a bird’s eye view of the Fischertechnik model and F&Rifecuses of the stack
feeder and the first part of the conveyor belt. The DES models of thessutlsystems are taken
from [13] and will be used to perform a test for decentralized diagnibsa

The stack feeder (sf) consists of a stack holding the workpieces aell with a tiny block that
shoves one workpiece at a time onto the conveyor belt (cb1l). The ex@ntgstack feeder move)
andsfstp (stack feeder stop) trigger the motion of the stack feeder belt. A photdelbatrrier
detects the presence of a workpiece: At the arrival of a workpiefiepar (workpiece arrives)
occurs and when it leaves the sensor triggefigplv (workpiece leaves). The block has got a
defined rest position which is detected by a magnetic sensor that trigfgefsest position) and
stnr (not in rest position). A possible failure that can occur within the stacldeés that a
workpiece jams. Suppose that aftefimv, due to some irregularity, the workpiece lifts a bit at its
front site. Then it can hit the lateral cross beam of the stack feeddvlaokithe movement of the
stack feeder belt. We call this failufe wp jm (workpiece jams). Theontrolledbehaviour of the
stack feeder including possible occurrences of the faifurg jm is shown as automatdBgs in
Figurel 6.3. The eventf-cbl is a shared event between the stack feeder sf and the conveyor belt

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 53

Figure 6.1: The Fischertechnik model of a manufacturing system.

cbl. Whenever it can be executed it indicates that interaction of the stad&rfwith the conveyor
belt is possible, i. e., a workpiece can be delivered to cbl. To recogreziailure after the jam
of the workpiece, a timer with an appropriate threshold is introduced. tsstanning and resets,
respectively after each occurrencesdhr. If the timer overflows beforefwplv occurs the event
t_sfisissued.

The conveyor belt cbl transports workpieces by moving in the negatiuegtion. The movement
is triggered bycb1-x and stopped byblstp. The arrival of the workpiece on the conveyor belt
is detected by a capacitive sensor in the pusher and is indicatesllhypar (workpiece arrives).
For this example we simplified the behaviour of cb1. The simplified m@dgbf the controlled
behaviour of the conveyor belt is shown in Figure 6.4. It includes a fafluspfd which simply
consists of the workpiece dropping from the conveyor belt (workpiaks down). Additionally,
we introduce a second timer that resets every tame-x occurs. If the overflow occurs before
cblawpar, than the evenf_wp£d is triggered.

Gst and Gep, with their alphabet&s; andXq, are now considered as two modules of an overall
systemG. The nominal behaviour of the two subsystems is given by the specificdfigrad
K¢p that are modelled as specification auton@ieandCgy, (see Figure 6.5 and 6.6), whefgy, =
L(Ccp) andKgs = L(Csp).

We now want to verify decentralized diagnosability of the overall sys&e Gy || Ggp With
respect to the specificatiok = Kg || Kep. Therefore, we have to define abstraction alpha-

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 54

Figure 6.2: Stack feeder and conveyor belt with pusher of the Fischaitemodel.

sfstp
sfir _tsf
 wpjm - E

f wpjm, -

sfor 7

Figure 6.3: The stack feeder mod&}; including the unobservable failure eveftwp jm.

bets S and 3¢, Given the set of shared events, = S N e, = sf-cbl andi = {sf,chy,

we chooses; such thats; D X, are as small as possible but such that the natural projections
pi: X — i;" are loop-preserving observers for the local plaatsin this example it results that

isf ={sf-cbl,sfwplv,f_wpjm} andicb ={sf-cbl,cblawpar, f_wpfd}.

To perform the actual test of diagnosability, the subsystem and spéoificaitomata, as well as
the abstraction alphabets are store&irL vectorand the function
bool IsDecentralizedDiagnosablepnst vector<cGenerator>& G, const

vector<cGenerator>& C, const vector<EventSet& %, string& rReport)

is called with an additionadtring variable that provides human readable information in case of a
negative test result.

As explained in Chapter 5.3, a decentralized diagnosability test is madesigr &sbsystem.

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 55

sfstp

Figure 6.5: The specification automaiGg for the stack feeder.

First, decentralized diagnosability @ is examined bybool IsDecentralizedDiagnosablednst
cGenerator& Ggy, const cGenerato& Kgf, const cGenerato& Ggp, const EventSe& icb, string& rReport)

according to the following steps:

1. The abstraction alphabé;,f is computed such thaiss: X% — igf is an L-observer. Here,
Sof = {sf-cbl, sfuplv, f_wpjm}. Figure 6.7 shows the abstraction automaégn

2. The abstractiofs, is created by performing the loop-preserving projectiogf on the
abstraction alphabél, (see Figure 68).

3. Gy =G || Gep is the joint behaviour of the abstractions of the subsystems and is depicted in

Figure 6.9.

4. Hg is the local view of3; from the local sitéSs;. It is created by replacing all transitions in
G, with events that are not i by e-transitions (see Figure 6.10). Note teatansitions do
not exist in libFAUDES. We useoid cProjectNonDet ¢Generator& Gy,const EventSe& S) that
replaces-transitions by inserting additional transitions and further initial states ifsszrg.

5. Hst = Get || Hst is computed. This parallel composition incorporates the high-level behaviou

of Gep in Hgt (see Figure 6.11).

Figure 6.6: The specification automaiGg, for the conveyor belt.

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 56

6. The function determines thit; is generalized diagnosable with respedftpand addition-
ally verifies that every cycle i, contains at least one eventig. From Proposition 51 it
follows, thatGg; is decentralized diagnosable with respedia

To illustrate the testing according to Proposition 5.1, exarhigeandG;: Firstly, from the model

of Hgf, generalized diagnosability with respectdg can be recognised. All faulty traces contain-
ing the failure evenf_wpjm (cp. the faulty states within {8,9,10,19,20,21,28,29,30}) do deadlock
with the occurrence of_sf in any of the states {10,21,30}. Sinee sf only occurs in the faulty
traces, the violation dks; can be determined unambiguously. Secondly, lookir@awe identify

two cycles at states {1,2,3} and {1,2,5}, respectively. Both of them corttereventsf-cb1 and
sfwplv which belong t&s;.

Figure 6.7: The abstraction automat8g.

A

Gcb

sf-cbl _fowpfd_

Figure 6.8: The loop-preserving abstraction autom&ign

Figure 6.9:G; represents the joint behaviour of the abstractiGgsandGep,.

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS

57

sf-cb1

Figure 6.10Hs; is the local view 0fG; from Gg.

sf-cbl

sftp

fwpim__ - ---~ f_wpjm_ -

| e

sfwply

sfstp sfwpar
0)
sf-cbl

f_wpjm

sfstp

Figure 6.11Hg is the behaviour o6t incorporationg the high-level behaviour Gfp.

SISON9VIA 3dNTIvVd d3ZIMVELNIO3d 40 NOILYIITddV "9 431dVHD

8G

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 59

Next, decentralized diagnosability of the second subsystem, naBgglg checked analogously.
The testing automata are shown in Figures 6.12 to 6.15. Aghinturns out to be generalized
diagnosable with respect K, as similarly to before, every faulty trace unambiguously ends with
the occurrence ot_cb that leads into any of the deadlocking states in {8,14,19}. Additionally,
any of the cycles occurring at states {1,2,3} and {1,2,553n contains at least one eventig. It
follows from Proposition 5.1 thab., is decentralized diagnosable with respedtg.

Allin all, both subsystem&ss andGgp, are individually decentralized diagnosable. Thus, it follows
from Theorem 5.1 that the overall syst@n= Gg; || G¢p, is decentralized diagnosable with respect
to the specificatiolk = K¢t || Kep.

CA;cb

st-cbl f_wpfd_ @

Figure 6.12: The abstraction automateg,.

Figure 6.14G, represents the joint behaviour of the abstracti®gsandGep.

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS

60

sf-cb1

Figure 6.15Hp is the local view ofG, from Gep,.

ch

sf-cbl

sf-cbl

cblawpar

cblstp

Figure 6.16H¢p is the behaviour o6G¢, incorporationg the high-level behaviour G§;.

SISON9VIA 3dNTIvVd d3ZIMVELNIO3d 40 NOILYIITddV "9 431dVHD

T9

CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 62

sf states cb states sflcb states
Cst 9 Cehb 4 C 36
Hs 36 Heo 21 - -
Gst 36 G 21 G 84

Table 6.1: The table lists the relevant automata and the cardinality of their stsitl® sempare
the test for decentralized diagnosability with the test for language dialgitibsa

To end with, we compare the test of decentralized diagnosabili§spand G¢, with the test of
diagnosability for the overall syste@® = Gg; || Gep With respect tK = L(C) with C = Cgt || Cep.

For the test of decentralized diagnosability, the autor@at&s, H;, andH; have to be generated
for every subsystem and théfh is tested for diagnosability with respectKe.

In contrast, for the centralized te§,andC are computed as parallel compositions and tBen

is tested for diagnosability againkt For an impression of the syste@ and the specification
automatorC, Figure 6.17 show& which has got the same transition structureGaut marks

its faulty language) and Figure 6.18 depi€sTable 6.1 compares the sizes of the automata by
listing the state numbers of the automata in the decentralized diagnosis test edraptnose of
the centralized diagnosability test.

Summarized, the ffierence in size of the automata in the decentralized test to those of the central-
ized test is evident: While the largest automaton for the centralized test I=iat84, the largest
automaton for the decentralized test has only 36 states. Since complexityioads already ob-
served in this example, we expect it to be even more visible in the case oSkeatrEsystems with
various subsystems.

CCCCCCCC . APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 63

S\ &
=z g
s - "
H 3 &
3 &l Iz
2 2
3 fE
E
5 ?)z
S @
z Ed

010

R
&
N%

TR
‘@@F@!%lylﬂ‘a o
O «@ ﬂ‘ “Z ‘ W W
G

M‘i’q‘?ﬁ‘(
SISIES

Figure 6.17G marks the faulty language of the overall syst@ma Gg; || Gep.

C

cblstp

cblstp

cbl-x

sfwpar

sfstp

cbl-x

sfstp

sfwpar

cblawpar

sfar %‘ sfwplv
sfmy cbl-x sfr cblawpar
sfwpar sf-cbl
cblawpar
@ st sfwply
cblstp

cblawpar
cblstp

sfir sfwplv

sfstp

sfstp

Figure 6.18C = Cg; || C¢p is the overall specification automaton.

cblawpar

sfwpar

SISON9VIA 3dNTIvVd d3ZIMVELNIO3d 40 NOILYIITddV "9 431dVHD

79

65

Chapter 7

Conclusion

Failure diagnosis has become a crucial task within the research of disuegtts systems (DES)
since the middle of theggos. With systems growing in size and complexity it becomes important
to find dficient procedures and algorithms for the on-line diagnosis and the validdtibagnos-
ability itself. In this thesis we focused on the latter.

After introducing the relevant basics of DES, we presented the notiod&ghosability and I-
diagnosability, and the diagnoser according to Samegdh. [12]. A method for testing diagnos-
ability with polynomial complexity was given according to Jiagigal. [5] and we additionally
developed a polynomial-time test for verifying the I-diagnosability propefrty ystem.

In accordance with the notion of codiagnosability of Qiu and Kumar [8] wenéhiced diag-
nosability with respect to specification languages and developed a tebkefgalidation of this
so-called language diagnosability which is polynomial in complexity.

In Chapter 5, we presented a polynomial-time abstraction-based apdovadécentralized di-
agnosis of a modular system with local specifications which does not eetildrconstruction
of the complete plant model and specification. To determine decentralizedodegjlity for a

subsystem, the local view of the abstractions joint behaviour is determireed@sdeterministic
automaton. From there a model of the subsystem that incorporates aactbstof the other sub-
systems’ behaviour is computed. This newly obtained model is then useddopergeneralized
diagnosability test with respect to the local specification. The notion ofndiedzed diagnosabil-
ity for an individual subsystem was extended to the overall system angrélecticability of the

required conditions was illustrated.

The structure of the diagnoser, the diagnosability tests with respect tefaients, the diagnos-
ability test with respect to a specification, and the procedure of deceattaiagnosability testing
have been implemented as a plug-in for thet&oftware library libFAUDES.

CHAPTER 7. CONCLUSION 66

Finally, we validated the functionality of the newly introduced approach aadldporithmic im-
plementation by performing a decentralized diagnosis test for two interacibgystems of a
Fischertechnik model of a manufacturing system.

In future work, further tasks in the scope of failure diagnosis could béntiplementation of on-
line diagnostics in the libFAUDES library, creating an algorithm that extends leieel alphabets
such that projections on these alphabet become loop-preservingpimadkhe failure models of
a system such that it becomes decentralized diagnosable. Morecsentraddized diagnosability
testing could be studied for modular systems with a global specification thdingdas part of
the high-level language of the system.

67

Bibliography

[1] libFAUDES (Friedrich-Alexander University Discrete Event Systemsbrary).
http//www.rt.eei.uni-erlangen.deGdegfaudeg, 2009.

[2] Alfred V. Aho, John E. Hopcroft, and figey D. Ullman. The Design and Analysis of Com-
puter Algorithms Addison Wesley, January 1975.

[3] C.G. Cassandras and S. Laforturetroduction to Discrete Event Systen&pringer, 2008.
Second edition.

[4] Lei Feng and W.M. Wonham. On the computation of natural observedisitrete-event
systemsDecision and Control, 2006 45th IEEE Conference pages 428—-433, Dec. 2006.

[5] Shengbing Jiang, Zhongdong Huang, V. Chandra, and R. Kukaolynomial algorithm
for testing diagnosability of discrete-event systerAstomatic Control, IEEE Transactions
on, 46(8):1318-1321, Aug 2001.

[6] Andrea Paoli and Stéphane Lafortune. Diagnosability analysis lafsa of hierarchical state
machinesDiscrete Event Dynamic System$(3):385-413, 2008.

[7] W. Qiu, Q. Wen, and R. Kumar. Decentralized diagnosis of evenedrsystems for safely
reacting to failuresAutomation Science and Engineering, IEEE Transaction$():362—
366, April 2009.

[8] Wenbin Qiu and R. Kumar. Decentralized failure diagnosis of discretatesystemsSys-
tems, Man and Cybernetics, Part A: Systems and Humans, |[EEEaDht#mss on 36(2):384—
395, March 2006.

[9] P.J. Ramadge and W.M. Wonham. Supervisory control of a class aftiésevent systems.
SIAM J. Control and Optimizatiqr25:206—-230, 1987.

[10] P.J. Ramadge and W.M. Wonham. The control of discrete evennsysieoceedings of the
IEEE, 77:81-98, 1989.

BIBLIOGRAPHY 68

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, aférketzis. Failure di-
agnosis using discrete event moddDbecision and Control, 1994., Proceedings of the 33rd
IEEE Conference qr8:3110-3116 vol.3, Dec 1994.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, afidrigketzis. Diagnosabil-
ity of discrete-event systemgwtomatic Control, IEEE Transactions p#0(9):1555-1575,
Sep 1995.

K. Schmidt. Hierarchical Control of Decentralized Discrete Event Systems: Theod
Application PhD thesis, Lehrstuhl fir Regelungstechnik, Universitat Erlarig@mberg,
2005. Download: httgawww.rt.eei.uni-erlangen.deéGdegpublications.html.

R. Su and W. Wonham. Hierarchical fault diagnosis for discregaesystems under global
consistencyDiscrete Event Dynamic Systemi$(1):39-70, January 2006.

K. C. Wong and W. M. Wonham. On the computation of observers imelisevent systems.
Discrete Event Dynamic Systemg(1):55-107, 2004.

Tae-Sic Yoo and S. Lafortune. Polynomial-time verification of diaghdgy of partially
observed discrete-event system&utomatic Control, IEEE Transactions pA7(9):1491—
1495, Sep 2002.

C. Zhou, R. Kumar, and R.S. Sreenivas. Decentralized modulgnasis of concurrent dis-
crete event system®iscrete Event Systems, 2008. WODES 2008. 9th International Work-
shop on pages 388-393, May 2008.

	Front Page
	Contents

	1 Introduction
	2 Basic Notions and Definitions of Discrete Event Systems
	2.1 Languages
	2.2 Automata

	3 Diagnosis with respect to Failure Events
	3.1 The Notion of Diagnosability
	3.1.1 Diagnosability
	3.1.2 I-Diagnosability

	3.2 The Diagnoser
	3.3 Diagnosability Testing
	3.3.1 Testing Diagnosability
	3.3.2 Testing I-Diagnosablility

	3.4 Implementation in libFAUDES
	3.4.1 Automata and Sets in libFAUDES
	3.4.2 Diagnoser Structure and Handling
	3.4.3 Diagnosability Tests

	4 Diagnosability with respect to a Specification
	4.1 Definition and Testing Procedure
	4.2 Implementation in libFAUDES

	5 Decentralized Diagnosis
	5.1 Related Work
	5.2 Decentralized Diagnosis for Modular Plant and Specification
	5.2.1 Decentralized Diagnosability for Individual Subsystem
	5.2.2 Decentralized Diagnosability for the Overall System
	5.2.3 Illustration of the Conditions in the Decentralized Diagnosability Test
	5.2.4 Computational Complexity

	5.3 Implementation in libFAUDES

	6 Application of Decentralized Failure Diagnosis
	7 Conclusion
	Bibliography

