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The failure diagnosis for discrete event systems (DES) has been an active area of research for 
more than 10 years. In the general setting, it is desired to detect the occurrence of 
unobservable failure events by comparing partial observations of the system evolution and a 
model of the possibly faulty system behaviour. Several approaches to solve this diagnosis 
problem have been proposed in the literature.  
 
In this context, the major objective of this thesis is the computational support of existing 
failure diagnosis approaches and the development of a novel abstraction-based approach that 
can be applied to DES that are composed of multiple subsystems.  
 
In order to address the first task, the libFAUDES software library for DES that was developed 
at the Lehrstuhl für Regelungstechnik, has to be extended by a diagnosis plug-in for the 
failure diagnosis of DES. Furthermore, various examples from the literature and new 
application examples shall be used to verify the functionality of this diagnosis plug-in.  
 
The efficient abstraction-based controller synthesis techniques for discrete event systems 
(DES) that have been developed at the Lehrstuhl für Regelungstechnik are the basis for the 
second task. Analogous sufficient conditions for the abstraction-based failure diagnosis have 
to be established. Furthermore, the applicability of these conditions to practical systems has to 
be verified using a Fischertechnik model of a manufacturing system that is available at the 
Lehrstuhl für Regelungstechnik. In addition, algorithmic support for the abstraction-based 
failure diagnosis of DES has to be included in the designed diagnosis plug-in.  
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Chapter 1

Introduction

Many of today’s technical systems and processes can be modelled as discrete events systems

(DES). The DES framework is capable of describing the behaviour of event driven systems such

as manufacturing systems, transportation and traffic systems, as well as communication systems,

to mention but a few.

About two decades ago, Ramadge and Wonham established a fundamentalframework for the con-

trol of DES in their seminal paper “Supervisory control of a class of discrete event systems” [9].

They use a feedback controller denoted assupervisorto ensure that the system works as spec-

ified. The supervisor observes the events occurring in the system and disables the execution of

events according to the specification and its control strategy. Since the supervisor is only able to

record observable events, unobservable failures occurring in the system will not be noted. Thus,

the system might behave in an undesired or unpredictable manner that cannot be corrected by the

supervisor’s interventions.

To meet this problem, fault detection and isolation became an active area of research since the

1990s. Sampathet al. introduced the notion ofdiagnosability, provided conditions for a language

to be diagnosable and presented a systematic procedure for detection of failure events usingdi-

agnoserswhich observe the on-line behaviour of the system under investigation [11][12]. Based

on the work of Sampathet al., further research has been made regarding the procedure of test-

ing a systems diagnosability and Jianget al. and Yoo and Lafortune presented polynomial-time

algorithms to verify diagnosability of a DES in [5] and [16], respectively.

Since complex large-scale systems are cumbersome for fault diagnostics and due to the fact that

a lot of technical system exhibit a modular or decentralized structure, failure diagnosis of DESs

composed of multiple subsystems has become a crucial area of interest. Different approaches were

elaborated in this area. Among them, Qiu and Kumar introduced the notion ofcodiagnosability

for plants that are observed by several diagnosers [8] and Zhouet al. introduced the notion of

modular diagnosabilitythat uses local diagnosers dependant on local subsystems [17]. Further
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advance to hierarchical fault diagnosis has been made by Su and Wonham [14] who proposed a

hierarchical computational procedure and amultiresultional diagnosis approach. Recently, Paoli

and Lafortune [6] introducedL1-diagnosabilitywith the objective of detecting failure events using

only high-level observations.

In this thesis, a novel approach to decentralized diagnosability is developed. We present an

abstraction-based method and supply a computational implementation to test the diagnosability

of a system consisting of several subsystems with local specifications, where neither the construc-

tion of the overall system nor the overall specification is needed.

Based on the basics about formal languages and automata that are presented in Chapter 2, diag-

nostics with respect to failure events is introduced in Chapter 3. The notionsof dignosabilityand

I-diagnosabilityare explained and the construction of a basic diagnoser that can be usedfor on-

line diagnosis is presented. A method and algorithm for testing diagnosability is adopted from [5]

and modified for the application to I-diagnosability as well. Finally we present the algorithmic

implementation of the diagnoser structure and the integration of the diagnosabilitytests into adi-

agnosisplug-in of the libFAUDES software library. (For a short introduction to libFAUDES, see

Chapter 3.4.)

In Chapter 4, we state the notion oflanguage diagnosabilityfollowing [8] which defines the di-

agnosability of a system with respect to a specification language and develop a method to test it.

This method is also implemented using in the diagnosis plug-in.

Based on this, we investigate decentralized diagnosis in Chapter 5. We introduce the notion of

the loop-preserving observerand therewith establish a sufficient condition for decentralized di-

agnosability of individual subsystems which is then generalized to decentralized diagnosability

of a overall system. Furthermore, we show that our conditions are a useful approach to test de-

centralized diagnosability by illustrating that the violation of these conditions alsoleads to the

violation of diagnosability in practical cases. The chapter is concluded with the implementation of

the decentralized diagnosis test in the diagnosis plug-in of libFAUDES.

The applicability of the newly developed method is demonstrated in Chapter 6. Weuse two sub-

systems of a Fischertechnik model of a manufacturing system and performthe test of decentralized

diagnosis using the extended software library.

A conclusion completes the thesis and gives perspectives for possible fields of further research.
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Chapter 2

Basic Notions and Definitions of

Discrete Event Systems

This chapter provides the basic notions and definitions of discrete events systems (DES) that are es-

sential to understand the following chapters. The presented concepts are mainly adopted from [3],

and the reader is referred to this reference for further information.

A DES has got adiscretestate space and anevent-drivenstate transition mechanism. The discrete

states only change at discrete points in time, and only due to the asynchronous occurrence of

discrete events which are not triggered by time.

A formal way of describing the behaviour of a DES arelanguages.

2.1 Languages

We denote the finite event setΣ = {σ1,σ2, . . . ,σm} of a DES as analphabet. A sequence of events

taken from this alphabet is calledstring or trace, and theempty stringis denoted byε. If s is a

string, the number of events contained ins (counting multiple occurrences of the same event) is

called thelength of sand is denoted by|s|.

Definition 2.1 (Language). A language defined over an event setΣ is a set of finite-length strings

formed from events inΣ.

Definition 2.2 (Kleene-Closure).The set of all finite strings of elements ofΣ, including the empty

stringε is calledKleene-closureof Σ and denoted byΣ∗.

In the scope of this thesis, several operations on languages as definedin Definition 2.1 are needed.

In addition to the usual set operation, such as union, intersection, and difference with respect toΣ∗

the following operations are relevant:
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• Concatenation:Let La, Lb ⊆ Σ
∗, thenLaLb := {s∈ Σ∗ | s= sasb, sa ∈ La, sb ∈ Lb}.

• Complement:Let L ⊆ Σ∗, then the complement ofL is defined asLc = Σ∗−L.

• Prefix-Closure:Let L ⊆ Σ∗, then the prefix-closureL of L is defined asL := {s ∈ Σ∗ |

∃ t ∈ Σ∗ such thatst∈ L}. L is said to beprefix-closedif L = L.

• Kleene-closure:Let L ⊆ Σ∗, thenL∗ := {ε} ∪ L ∪ LL ∪ LLL . . .

• Post-language:Let L ⊆ Σ∗ ands∈ L. Then the post-language ofL after s, denoted byL/s,

is the languageL/s := {t ∈ Σ∗ | st∈ L}. By definition,L/s= ∅ if s< L.

Next, thenatural projectionis defined according to [10]. This function erases all events from a

strings∈ Σ∗ that do not belong to a given alphabetΣ̂.

Definition 2.3 (Natural Projection). Given an observation alphabetΣ̂ ⊆ Σ thenatural projection

p : Σ∗→ Σ̂∗ is defined by

p(ε) := ε

p(σ) :=















σ if σ ∈ Σ̂

ε if σ < Σ̂

p(sσ) := p(s)p(σ) for s∈ Σ∗ andσ ∈ Σ.

Given a string from the smaller alphabet ˆs∈ Σ̂, the inverse projectionreturns the set of all strings

s∈ Σ in the larger alphabet that project, withp, to the given string ˆs.

Definition 2.4 (Inverse Projection). GivenΣ̂ ⊆ Σ, theinverse projection p−1 : Σ̂∗→ 2Σ
∗

is defined

as

p−1(ŝ) := {s∈ Σ∗ | p(s) = ŝ}.

The projectionsp and their inversesp−1 can be extended to languages by applying them to all

strings in the language. ForL ⊆ Σ∗ the natural projection is defined as

p(L) := {t ∈ Σ̂ | ∃ s∈ L such thatp(s) = t}

and forL ⊆ Σ̂ the inverse projection is

p−1(L) := {s∈ Σ | ∃ t ∈ L such thatp(s) = t}.

Note thatp
[

p−1(L)
]

= L but in generalL ⊆ p−1 [p(L)
]

.

As it will be needed later in Chapter 5, we define thenatural observeras in [4].
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Definition 2.5 (Natural Observer). Consider the natural projectionp : Σ∗ → Σ̂∗, whereΣ̂ ⊆ Σ,

and a regular languageL ⊆ Σ∗. p is called anL-observerif for all t ∈ p(L) and for alls∈ L it holds

that

p(s) ≤ t ⇒ ∃u ∈ Σ∗ such thatsu∈ L andp(su) = t.

This definition states that if the projection stringp(s) can be extended tot in the smaller alphabet,

then there has to exist an extension ofs in the original alphabet so that the extended string in the

original alphabet projects to the extension ofp(s) in the smaller alphabet. This observer condition

ensures that the system that is observed by the projectionp will not reach a state with a different

future than the observed one.

Since it is not always easy and practical to enumerate all strings in a language, automataare

introduced as a framework for constructing, representing and manipulating languages.

2.2 Automata

An automaton is a structure capable of representing languages according towell-defined rules.

First, the definition of the nondeterministic automaton is presented.

Definition 2.6 (Nondeterministic Automaton). A nondeterministic automaton Gnd is a five-tuple

Gnd= (X, Σ∪{ε}, δnd, X0, Xm),

whereX is the set of states,Σ∪ {ε} denotes the finite set of events including the empty string,

δnd: X × Σ∪ {ε} → 2X is the transition function,X0 ⊆ X is the set of initial states, andXm ⊆ X is

the set of marked states.

The transition functionδnd is in general a partial function on its domain which means that for every

x ∈ X, δnd is only defined for a subset of the alphabetΣ. In the following we writeδnd(x,σ)! to

denote thatδnd(x,σ) is defined. Theactive event functionΓ : X→ 2Σ, which is the set of all events

σ for which δnd(x,σ) is defined, is omitted in this definition because it can easily be derived from

δnd. (Given a setA the notion 2A means the power set of A, i. e., the set of all subsets ofA.)

For convenience,δnd is extended to the domainX×Σ∗, so that it applies to a stringu as well.

δnd(x,uσ) := {z | z ∈ δnd(y,σ) for some statey ∈ δnd(x,u)}.

Considering all directed traces of a generator, starting from initial states,and among these only

those that end in a marked state, we can now define thegeneratedandmarked languageas the

connection between automata and languages.
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Definition 2.7 (Generated and Marked Language).Thegenerated languageof Gnd is

L(Gnd) = {s∈ Σ
∗ | ∃ x ∈ x0 such thatδnd(x, s)!}.

Themarked languageof G is

Lm(Gnd) = {s∈ L(Gnd) | ∃ x ∈ x0 such thatδnd(x, s)∩Xm , ∅}.

A frequently used special case of the nondeterministic automaton is the deterministic automaton.

It does not haveε-transitions, and is has just one initial state. Furthermore its transition functionδ

maps to a unique successor state.

Definition 2.8 (Deterministic Automaton). A deterministic automaton Gis a five-tuple

G = (X, Σ, δ, x0, Xm),

where the entries have got the same interpretation as in the definition of the nondeterministic

automaton, with the following two differences:

1. δ is a functionδ : X × Σ→ X, which means that in a statex ∈ X an eventσ ∈ Σ will only

cause a transition to a unique state inX.

2. Theinitial state x0 ∈ X is just a single state, and no longer a set of states.

δ is also recursively extended from domainX × Σ to X × Σ∗, so that it applies to strings as well:

δ(x, ε) := x

δ(x, sσ) := f ( f (x, s),σ) for s∈ Σ∗ andσ ∈ Σ.

The languages generated and marked by the deterministic automatonG are defined as:

L(G) := {s∈ Σ∗ | δ(x0, s)!}

Lm(G) := {s∈ L(G) | δ(x0, s) ∈ Xm}.

A language is said to beregular if it can be marked by a finite-state automaton.

From the definitions ofG, L(G) andLm(G) we have that

Lm(G) ⊆ Lm(G) ⊆ L(G).

Definition 2.9 (Blocking). An automatonG is said to beblockingif

Lm(G) ⊂ L(G)

where the set inclusion is proper, andnonblockingwhen

Lm(G) = L(G).
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If an automaton is blocking, adeadlockor livelockcan happen. A reachable statex of an automaton

G is called adeadlockif Γ(x) = ∅ but x< Xm. A livelock is a set of unmarked states ofG that forms

a strongly connected component (i. e., the states are reachable from oneanother), but with no

transitions going out of the set.

We now introduce several operations on automata that are essential for the concepts discussed in

this thesis.

The parallel compositionrepresents the joint behaviour of two automataG1 = (X1, Σ1 ∪

{ε}, δ1, X01, Xm1) andG2 = (X2, Σ2∪ {ε}, δ2, X02, Xm2) that are synchronized by means of their

shared events. Thus, ashared eventσ ∈ Σ1∩Σ2∪ {ε} can only be executed, if the two automata

both execute it at the same time. All other events can occur whenever possible.

Definition 2.10 (Parallel Composition of Nondeterministic Automata). Theparallel composi-

tion of G1 andG2 is the automaton

G1 ‖G2 := (X1×X2, Σ1∪Σ2∪{ε}, δ‖, X01×X02, Xm1×Xm2)

where

δ‖((x1, x2),σ) :=











































δ1(x1,σ)×δ2(x2,σ) if σ ∈ Γ1(x1)∩Γ2(x2)

δ1(x1,σ)×{x2} if σ ∈ Γ1(x1) \Σ2

{x1}×δ2(x2,σ) if σ ∈ Γ(x2) \Σ1

undefined otherwise.

In the case of deterministic automataG1 andG2, the parallel composition simplifies to the follow-

ing definition.

Definition 2.11 (Parallel Composition of Deterministic Automata). Theparallel composition

of G1 andG2 is the automaton

G1 ‖G2 := (X1×X2, E1∪E2, δ, (x01, x02), Xm1×Xm2)

where

δ((x1, x2),σ) :=











































(δ1(x1,σ), δ2(x2,σ)) if σ ∈ Γ1(x1)∩Γ2(x2)

(δ1(x1,σ), x2) if σ ∈ Γ1(x1) \Σ2

(x1, δ2(x2,σ)) if σ ∈ Γ(x2) \Σ1

undefined otherwise.

The parallel composition of languages can be derived from the parallel composition of automata

as follows:

L(G1) ‖ L(G2) = L(G1 ‖G2)

Lm(G1) ‖ Lm(G2) = Lm(G1 ‖G2).
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Chapter 3

Diagnosis with respect to Failure Events

In this chapter, diagnosability of DES with respect to failure events is presented. The basic concern

is to identify the occurrence, if any, of certain unobservable failure events in a DES. Therefore, all

occurring observable events are tracked and the actual state of the system is estimated.

3.1 The Notion of Diagnosability

In [12], Sampathet al. introduce two related notions of diagnosability of DES: diagnosability and

I-diagnosability. They present a systematic procedure for detection andisolation of failure events

usingdiagnosersand provide necessary and sufficient conditions for a language to be diagnosable.

A diagnoser is a finite state automation built from the finite state model of the observed system. It

performs diagnosis while observing the on-line behaviour of the system. The diagnoser states carry

failure information and thus, inspecting these states, occurrences of failures can be detected on-line

with a finite delay if the system is diagnosable. In contrast, the verification of the diagnosability

property of a system has to be performed off-line.

Before being able to define diagnosability according to [12], the following notions have to be

introduced. LetG = (X,Σ, δ, x0) be a deterministic finite state automaton. (In following, we often

consider finite state automata, where all states are marked. In that case, wedo not include the

marked state in the description explicitly.) The event setΣ of G is partitioned as

Σ = Σo∪Σuo

whereΣo represents the set ofobservableevents andΣuo represents the set ofunobservableevents.

Theobservableevents may be commands issued by the controller, sensor readings directly after

the execution of the above commands, and changes of sensor readings.Theunobservableevents

may be failure events or other events that cause changes in the system notrecorded by sensors.

Σ f ⊆ Σ denotes the set of failure events which are to be diagnosed. Without loss ofgenerality, it is
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assumed thatΣ f ⊆ Σuo since observable events can be trivially diagnosed. It may be impossible to

diagnose uniquely every possible fault or one may simply be interested in knowing if one of a set

of failure events occurred (e. g., if the effect of a set of failures on the system is the same). Hence,

the set of failure eventsΣ f is partitioned into disjoint sets corresponding to different failure types

Σ f = Σ f 1∪ · · ·∪Σ f m. (3.1)

Π f = {1, . . . ,m} denotes the index set enumerating the partitions. In the following, the expression

“a failure of typeFi has occurred” will mean that some event from the setΣ f i has occurred.

Furthermore, the following assumptions are met for the system under investigation.

Assumption 3.1 (Liveness).L(G) is live, i. e., there is a transition defined at each statex in X.

This assumption is made for the sake of simplicity.

Assumption 3.2 (No Unobservable Cycles).There does not exist any cycle of unobservable

events inG, i. e.,∃no ∈ � such that∀ust∈ L, s∈ Σ∗uo ⇒ |s| ≤ no. This ensures thatG does not

generate arbitrarily long sequences of unobservable events which would violate diagnosability.

Let po be the projectionpo : Σ∗→ Σ∗o, and withy ∈ Σ∗, p−1
L (y) = {s∈ L | po(s) = y} be the inverse

projection on the languageL. sf is the final event of traces and the set of all traces ofL that end

in a failure event belonging to the classΣ f i is defined as

Ψ(Σ f i) = {sσ f ∈ L | σ f ∈ Σ f i}.

Givenσ ∈ Σ ands∈ Σ∗, the notations∈ σ denotes thatσ is an event ins. If there exists aσ f ∈ Σ f i

such thatσ f ∈ s, the notionΣ f i ∈ sstates with slight abuse of notation thats∩Ψ(Σ f i) , ∅, wheres

is the prefix-closure ofs. Additionally, Xo is defined as

Xo = {x0}∪ {x ∈ X | there is an observable transition leading tox}. (3.2)

3.1.1 Diagnosability

With the definitions and notions introduced above it is now possible to define diagnosability for-

mally. Roughly speaking, a languageL is diagnosable if, using the record of observed events, it is

possible to detect the occurrence of failures of any type with a finite delay.

Definition 3.1 (Diagnosability). A prefix-closed and live languageL is said to bediagnosable

with respect to the projectionpo and with respect to the partitionΠ f if the following holds

(∀i ∈ Π f )(∃ni ∈�)[∀s∈ Ψ(Σ f i)](∀t ∈ L/s) [|t| ≥ ni ⇒ D]

where the diagnosability conditionD is

ω ∈ p−1
L
[

po(st)
]

⇒ Σ f i ∈ ω.



CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 10

This definition means: Given a traces∈ L that ends in a failure event from the setΣ f i , and any

sufficiently long continuationt of s. The diagnosability conditionD requires that every traceω ∈ L

that produces the same record of observable events asst should contain a failure event from the

setΣ f i . Thus, along every continuationt of s the occurrence of a failure of typeFi can be detected

in at mostni transitions afters.

G
1 2 3

4

5

α

β

γ

δ

σ f 1

σ f 2

σ f 3

σuo

Figure 3.1: Example illustrating diagnosability.

Figure 3.1 depicts a system to illustrate diagnosability. Here,α,β,γ, andδ are observable events,

while σuo is an unobservable event andσ f 1,σ f 2, andσ f 3 represent unobservable failure events.

If the failure partition is chosen withΣ f 1 = {σ f 1,σ f 2} andΣ f 2 = {σ f 3}, i. e., it is not required to

distinguish between failuresσ f 1 andσ f 2, then the system is diagnosable withn1 = 2 andn2 = 1.

On the other hand, if the failure partition isΣ f 1 = {σ f 1}, Σ f 2 = {σ f 2}, andΣ f 3 = {σ f 3}, then the

system is not diagnosable because it is not possible to identify the occurrence of failureσ f 2.

3.1.2 I-Diagnosability

I-diagnosability, as presented by Sampathet al. in [12], is a relaxed definition of diagnosability

that requires the diagnosability conditionD only to hold for traces in which the failure event

is followed by certain observableindicator events associated with the corresponding failure type.

This is useful for systems where a component or a part of the system, respectively, might fail while

the rest of the system is still able to execute an arbitrarily long non-faulty trace without being able

to recognize the failure. If, e. g., in an HVAC (heating, ventilating, and air conditioning) system

a valve fails, one might not be able to tell so until the controller tries to operate the valve. To

meet this problem, I-diagnosability requires detection of failures only after the occurrence of an

indicator event corresponding to the failure. Spoken in the example of the valve, the indicator

events could be the commandsopen valveandclose valve.

Let ΣI ⊆ Σo denote the set of indicator events, and letI f : Σ f → 2ΣI denote the indicator map. The

failure event set is partitioned as in (3.1), with the additional constraint thatfor eachi = 1, . . . ,m

σ f 1,σ f 2 ∈ Σ f i ⇒ I f (σ f 1) = I f (σ f 2).
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The indicator mapI is extended to failure event sets by defining

I (Σ f i) = I f (σ f ) for any σ f ∈ Σ f i .

Hence, a set of observable indicator eventsI (Σ f i) is associated with each failure typeFi .

Definition 3.2 (I-Diagnosability). A prefix-closed and live languageL is said to beI-diagnosable

with respect to the projectionpo, the failure partitionΠ f on Σ f , and the indicator mapI if the

following holds

(∀i ∈ Π f )(∃ni ∈�)[∀s∈ Ψ(Σ f i)](∀t1t2 ∈ L/s | st1 ∈ Ψ[I (Σ f i)])

[|t2| ≥ ni ⇒ D]

where the diagnosability conditionD is

ω ∈ p−1
L
[

po(st1t2)
]

⇒ Σ f i ∈ ω.

Here,Ψ[I (Σ f i)] denotes the set of all traces ofL that end in an indicator event from the setΣ f i . It

is required, that the occurrence of a failure event of the typeFi which is “some when” followed

by an indicator event from the setI (Σ f i) should be detected in at mostni transitions of the system

after the occurrence of the indicator event. So if the failure event occurs, but is not followed by a

matching indicator event, I-diagnosability does not require it to be detected.

For an illustration of I-diagnosability, consider the system represented in Figure 3.1. Given a fail-

ure partitionΣ f 1 = {σ f 1}, Σ f 2 = {σ f 2}, andΣ f 3 = {σ f 3} and the indicator eventsI (Σ f 1) = {γ} and

I (Σ f 2) = I (Σ f 3) = {δ}. Then the system is I-diagnosable withn1 = 0 andn3 = 0. Note that in this

case I-diagnosability does not require the failureσ f 2 to be identified because the corresponding

indicator eventδ does not follow the failure event.

3.2 The Diagnoser

We now describe the concept of adiagnoser. This automaton is used to perform diagnostics while

observing the on-line behaviour of a systemG which includes all relevant failure events in its

modelling. Sampathet al. show in [12, Section V] that this diagnoser is adequate for on-line

diagnosis of diagnosable and I-diagnosable systems, with or without multiple failures. Since the

concept of multiple failures is only relevant for their diagnosability test (which we are not going

to use), we omit it here.

In the following, the construction procedure of the diagnoser accordingto [12] is presented.

Given the labelN meaningnormal, i. e., no failure occurred, the labelA meaningambiguous(as

explained on p. 13), andFi with i ∈ {1, . . . ,m} meaning a failure of typeFi has occurred. Then
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the set of failure labels is defined as∆ f = {F1,F2, . . . ,Fm} where
∣

∣

∣Π f

∣

∣

∣ =m and the complete set of

possible combinations of labels is∆ = {N}∪2∆ f∪{A}.

Furthermore, withXo from (3.2), we defineQo = 2Xo×∆.

Now the diagnoser for the systemG is the finite state automaton

Gdiag= (Qdiag,Σo, δdiag,q
diag
0 )

whereQdiag,Σo, δdiag, and qdiag
0 are interpreted as usual. The initial stateqdiag

0 is defined to be

(x0, {N}) and the transition functionδdiag is constructed as explained below. The state spaceQdiag

is the resulting subset ofQo composed of the states of the diagnoser that are reachable fromQo

underδdiag. Since the state spaceQdiag of the diagnoser is a subset ofQo, a stateqd of Gdiag is of

the form

qd = {(x1, l1), . . . , (xn, ln)}

where x ∈ Xo and l i ∈ ∆, i. e., l i is of the form l i = {N}, l i = {A}, l i = {Fi1,Fi2, . . . ,Fik}, or

l i = {A,Fi1,Fi2, . . . ,Fik} where in the last two cases{i1, i2, . . . , ik} ⊆ {1,2, . . . ,m}. The states of the

diagnoserGdiag carry labelled state estimates of the observed system. The labels carry failure

information and failures are diagnosed by checking these labels. The initialstate is defined as

qdiag
0 = {(x0, {N})}.

Before being able to define the transition functionδdiag, we introduce the following functions.

Let Lo(G, x) denote the set of all traces that start at a statex and end at the first observable event:

Lo(G, x) = {s∈ L(G, x) | s= uσ, u ∈ Σ∗uo, σ ∈ Σo},

whereL(G, x) is the set of all traces that originate from statex in G.

Definition 3.3 (Label Propagation Function). Given x ∈ Xo, l ∈ ∆, ands∈ Lo(G, x). The label

propagation function LP: Xo ×∆ × Σ
∗ → ∆ propagates the labell over s, starting fromx and

following the dynamics ofG, i. e., according toL(G, x). It is defined as follows

LP(x, l, s) =































{N} if l = {N}∧∀i[Σ f i < s]

{A} if l = {A}∧∀i[Σ f i < s]

{Fi | Fi ∈ l∨Σ f i in s} otherwise.

Definition 3.4 (Range Function). Therange function R: Qo×Σo→ Qo is defined as

R(q,σ) = {δ(x, s),LP(x, l, s) | (x, l) ∈ q∧ s∈ Lσ(G, x)}

Definition 3.5 (Label Correction Function). The label correction function LC: Qo → Qo is

defined as

LC(q) = {(x, l) ∈ q | x appears only once in all the pairs inq} ∪

{(x, {A}∪ l i1∩ · · ·∩ l ik) whenever there exist

two or more pairs (x, l i1), . . . , (x, l ik) in q}.
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The label correction function assigns the diagnoser state labels. The label acquired by any statex

along a traces indicates the occurrence or non-occurrence when the system moves along traces

and transitions into statex.

The labelA has to be interpreted as follows. Suppose that for some stateq ∈ Qdiag there exist two

pairs (x, l), (x, l′) in R(q,σ). This implies that the statex could have resulted from a failure event

of a particular type, sayFi , or not. In this case we attach the labelA to denote that there is an

ambiguity. Hence, labelA has to be interpreted as meaning “eitherFi or notFi” for i ∈ {1, . . . ,m}.

Now the transition functionδdiag: Q0×Σ0→ Q0 is defined as

q2 = δdiag(q1,σ) = LC
[

R(q1,σ)
]

with σ ∈ ed(q1) whereed(q1) is the active event set ofGdiag at the stateq1:

ed(q1) =
⋃

(x,l)∈q1

{P(s) | s∈ Lo(G, x)}.

To illustrate the construction of the diagnoser Figure 3.2 depicts an example ofa systemG and

its diagnoserGdiag. Hereα,β,γ,δ, andσ are observable events whileσuo,σ f 1,σ f 2, andσ f 2′ are

unobservable. The failure partition isΣ f 1 = {σ f 1} andΣ f 2 = {σ f 2,σ f 2′}. In the following a state-

label-pair (x, l) will be represented asxl for the sake of clarity.

3.3 Diagnosability Testing

In [12], Sampathet al. proposed a necessary and sufficient condition to test diagnosability. Their

testing procedure requires the diagnoser to be constructed first and then checks for ambiguous

states andFi-indeterminatecycles in the diagnoser. In simple terms, the latter are cycles ofFi-

uncertainstates (i. e., states of the diagnoser that contain state estimates of the same state,the

one containingFi in its label, the other not) for which there exists (i) a corresponding cycle of

states in the original generator that carryFi in their labels in the cycle of the diagnoser and (ii) a

corresponding cycle of states in the original generator that do not carry Fi in their labels in the

cycle of the diagnoser.

The major disadvantage of the condition presented by Sampathet al. that in order to test diagnos-

ability of a system the diagnoser has to be constructed first and the state space of the diagnoser is

in the worst case exponential in the cardinality of the state space of the system model. Practically

spoken, constructing the diagnoser is cumbersome if afterwards it turns out that the system is not

diagnosable.

To meet this problem, Jianget al. [5] and Yoo and Lafortune [16] proposed two different tests of

diagnosability that require only polynomial time in the number of states of the system model.



CHAPTER 3. DIAGNOSIS WITH RESPECT TO FAILURE EVENTS 14

1

2

4

8

15

18

3

65 7

9

10

11

13

12

14

16
17

19 20
α

α

α

α

α

α

β

β

β

β

β

β

γ

γ

γ

γ

δ

δ

δ

σ

σ

σuo

σ f 1

σ f 1

σ f 2

σ f 2

σ f 2

σ f 2′

G

(a) The SystemG.
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(b) The DiagnoserGdiag.

Figure 3.2: Example construction of the diagnoserGdiag from the systemG [12]. The state names

of Gdiag carry state estimates for the plantG. LabelN indicates “normal” and labelFi the occur-

rence of a failure of typeFi . If all state estimates in a diagnoser state name carry unique failure

labels, then the a failure of typeFi is identified.

In the following section the diagnosability test according to Jianget al. will be presented and in

Section 3.3.2 we propose a modification of the approach of Jianget al.with the objective of testing

I-diagnosability in polynomial-time as well.

3.3.1 Testing Diagnosability

In [5], Jianget al. presented an approach to test a system for diagnosability that does not require

the construction of the diagnoser. The complexity of their method is polynomial inthe number of

states of the system and also polynomial in the number of failure types.

In the following we will demonstrate the algorithm proposed by Jianget al. The systemG under

investigation has to meet the assumptions stated in Chapter 3.1 and additionally to theknown

notions we define apathin G as a sequence of transitions (x1,σ1, x2, . . . ,σn−1, xn) such thatδ(xi ,σi)

exists withδ(xi ,σi) = xi+1 for all i ∈ {1, . . . ,n−1}. A path is called acycleif xn = x1. LetF = {Fi |
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i = 1,2, . . . ,m} denote the set of failure types,ψ : Σ→F be the failure assignment function for each

eventσ ∈ Σ, andpo : Σ∗→ Σ∗o be the observation mask. As before, we do not include the marked

state in the description of automata explicitly because we only consider finite stateautomata, where

all states are marked.

Algorithm 3.1 (Diagnosability Test). For a given systemG = (X, Σ, δ, x0) with an observation

maskpo and a failure assignment functionψ, do the following:

1. Construct a nondeterministic finite state automatonGo = (Xo, Σo, δo, xo
0) with language

L(Go) = p(L(G)) as follows:

• Xo= {(x, f ) | x∈ X1∪{xo}, f ⊆F } is the finite set of states, whereX1= {x∈ X | δ(x′,σ)=

x, with x′ ∈ X, po(σ) , ε} is the set of states inG that can be reached through an

observable transition, andf is the set of failure types along certain paths fromx0 to x.

• Σo, the set of observable events, is the set of events labels forGo.

• δo is the set of transitions.δo((x, f ),σ) = (x′, f ′) if and only if there exists a path

(x,σ1, x1, . . . ,σn, xn,σ, x′),n≥ 0 in G such that∀i ∈ {1,2, . . . ,n}, po(σi) = ε, po(σ) = σ,

and f ′ = {ψ(σi) | ψ(σi) , ∅,1≤ i ≤ n}∪ f ; otherwiseδo((x, f ),σ) is not defined.

• xo
0 = (x0,∅) ∈ Xo is the initial state.

2. ComputeGd =Go ‖Go = (Xd, Σo, δd, xd
0), where

• Xd = {(xo
1, x

o
2) | xo

1, x
o
2 ∈ Xo} is the set of states.

• Σo is the set of events labels forGd.

• δd is the transition function.δd((xo
1, x

o
2),σ) := (yo

1,y
o
2) if and only if δo(xo

1,σ) = yo
1 and

δo(xo
2,σ) = yo

2; otherwiseδd((xo
1, x

o
2),σ) is not defined.

• xd
0 = (xo

0, x
o
0) ∈ Xd is the initial state.

3. Check whether there exists inGd a cycle cl = (x1,σ1, x2, . . . , xn,σn, x1), n ≥ 1, xi =

((x1
i , f 1

i ), (x2
i , f 2

i )), i = 1,2, . . . ,n, such thatf 1
1 , f 2

1 . If there exists such a cycle, then the

systemG is not diagnosable; otherwise it is diagnosable.

Theorem 3.1 (Diagnosability).G is diagnosable if and only if for every cyclecl in Gd,

cl = (x1,σ1, x2, . . . , xn,σn, x1), n≥ 1, xi = ((x1
i , f 1), (x2

i , f 2)), i = 1,2, . . . ,n

we havef 1 = f 2.

As it is given in [5], the proof of this theorem is omitted here.

The complexity of the method shown in Algorithm 3.1 is

O(|X|4×24|F |× |Σo|)
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which is polynomial in the number of states inG and exponential in the number of failure types

in G. In order to make the complexity polynomial in the number of failure types as wellnote that

a system is diagnosable with respect to the failure typesF = {Fi | i = 1,2, . . . ,m} if and only if it is

diagnosable with respect to each individual failure typeFi , i = 1,2, . . . ,m. Thus, Algorithm 3.1 can

be appliedm different times to test diagnosability of the systemG with respect to the individual

failure type set{F1}, . . . , {Fm}. Now each failure type set is a singleton (a set with just one element),

the complexity of each such test isO(|X|4×24|1|× |Σo|) = O(|X|4× |Σo|). The overall complexity of

testing diagnosability ofG is

O(|X|4× |Σo| × |F |)

which is polynomial in the number of states of the system and linear in the number of failure

types. [5]

To illustrate the test according to Algorithm 3.1 consider the system shown in Figure 3.3.σuo is

an unobservable event andσ f 1,σ f 2 are unobservable failure events. LetF = {F1,F2}, ψ(σuo) =

ψ(σi) = ∅, i = 1,2,3, andψ(σ f 1) = F1,ψ(σ f 2) = F2. Here, we will just consider the single failure

typeF1 and thus Algorithm 3.1 is only applied forF1. We first deriveGo from G (see Figure 3.4).

For compatibility, we will label states with no failure label withN instead of the empty set. To

obtain Gd, we then compute the parallel composition ofGo with itself. In Gd, as depicted in

Figure 3.5, note the self loop at state (4N,4F1). From the last step in Algorithm 3.1 it follows that

the systemG is not diagnosable with respect to the given failure partition.

However, if the failure types do not have to be distinguished, i. e.,ψ(σ f 1) = ψ(σ f 2) = F, Go and

Gd result in the automata depicted in Figure 3.6. As there do not exist any cycleswith different

failure labels inGd, the systemG is now diagnosable with respect to the new failure partition.

1 2 3

4

5

σ1

σ2

σ3
σ f 1σ f 1

σ f 2

σuo

G

Figure 3.3: The systemG.

3.3.2 Testing I-Diagnosablility

The approach of Jianget al. to test a systemG for diagnosability applies to diagnosability only. In

order to test for I-diagnosability in a similar manner we extend their method as described below.

I-diagnosability requires the detection of a failure (within a bounded numberof transition) only

if one of its indicator events occurredafter the failure event. According to [12], the condition of
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Figure 3.4: The nondeterministic automatonGo.

σ1

σ2

σ2

σ2

σ2

σ2

σ2

σ2

σ2

σ3

σ3

1N,1N 2N,2N

4N,4N

4N,4F1
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Figure 3.5:Gd.
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(a)Go.

1N,1N 2N,2N

4F,4F

5F,5F

σ1

σ2

σ2

σ3
σ3

Gd

(b) Gd.

Figure 3.6:Gd for a single failure type.

I-diagnosability is violated if there exists two tracess1 and s2 in L(G), that both have the same

observable projection, ands1 contains a failure event from the failure setΣ f i followed by an

indicator event for the setI (Σ f i) while s2 does not contain any event from the setΣ f i .

Thus, we modify Algorithm 3.1 so that traces inGd should only be considered after the occurrence

of an indicator event that follows a failure event from the corresponding failure set. For simplicity,

we only take into account an individual failure setΣ f . To check for I-diagnosability with respect

toF = {Fi | i = 1,2, . . . ,m} one has to perform the following algorithm for allFi separately.

Algorithm 3.2 (I-Diagnosability Test for Failure Type F). For a given systemG = (X, Σ, δ, x0)

with an observation maskpo and a failure assignment functionψ, do the following:

1. Construct a nondeterministic finite state automatonGo = (Xo, Σo, δo, xo
0) with language

L(Go) = p(L(G)) as follows:

• Xo= {(x, f ) | x∈X1∪{xo}, f ⊆ Σ f } is the finite set of states, whereX1= {x∈X | δ(x′,σ)=

x, with x′ ∈ X, po(σ) , ε} is the set of states inG that can be reached through an

observable transition, andf is the set of failure types along certain paths fromx0 to x.

• Σo, the set of observable events, is the set of events labels forGo.

• δo is the set of transitions.δo((x, f ),σ) = (x′, f ′) if and only if there exists a path

(x,σ1, x1, . . . ,σn, xn,σ, x′),n≥ 0 in G such that∀i ∈ {1,2, . . . ,n}, po(σi) = ε, po(σ) = σ,

and f ′ = {ψ(σi) | ψ(σi) , ∅,1≤ i ≤ n}∪ f ; otherwiseδo((x, f ),σ) is not defined.

• xo
0 = (x0,∅) ∈ Xo is the initial state.

2. ComputeGd =Go ‖Go = (Xd, Σo, δd, xd
0), where

• Xd = {(xo
1, x

o
2) | xo

1, x
o
2 ∈ Xo} is the set of states.

• Σo is the set of events labels forGd.

• δd is the set of transitions.δd((xo
1, x

o
2),σ) = (yo

1,y
o
2) if and only if δo(xo

1,σ) = yo
1 and

δo(xo
2,σ) = yo

2; otherwiseδd((xo
1, x

o
2),σ) is not defined.
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• xd
0 = (xo

0, x
o
0) ∈ Xd is the initial state.

3. Check whether there exists inGd a cycle

cl = (x1,σ1, x2, . . . , xn,σn, x1),n ≥ 1, xi = ((x1
i , f 1

i ), (x2
i , f 2

i )), i = 1,2, . . . ,n, such that∃u0 ∈

Σ∗oΣF,I Σ
∗
o with δd(xd

0,u0) = x1 and f 1
Ind = F or f 2

Ind = F, with δd(xd
0,u0,Ind) = xInd =

(x1
Ind, f 1

Ind), (x2
Ind, f 2

Ind)) andu0,Ind is the prefix ofu0 that ends with the indicator event,

where f 1
1 , f 2

1 . If there exists such a cycle, then the systemG is not I-diagnosable forF;

otherwise it is I-diagnosable forF.

Before proving that this algorithm works, we first defineI : F → 2ΣI as a map to the correspond-

ing indicator events and provide the following two lemmas that Jianget al. [5] derived from the

definitions ofGo andGd.

Lemma 3.1. For the state machineGo it holds:

1. L(Go) = po(L(G)).

2. For every pathtr in Go ending with a cycle,

tr = ((x0,∅),σ0, (x1, f1), . . . , (xk, fk),σk, . . . , (xn, fn),σn, (xk, fk)),

we have

• fi = f j for any i and j in {k,k+1, . . . ,n}.

• ∃uv∗ ∈ L(G) such thatpo(u) = σ0 . . .σk−1, po(v) = σk . . .σn, and

{ψ(σ) | σ ∈ u,ψ(σ) , ∅} = {ψ(σ) | σ ∈ uv,ψ(σ) , ∅} = fk.

Lemma 3.2. For every pathtr in Gd ending with a cycle,

tr = (xd
0,σ0, x1, . . . , xk,σk, xk+1 . . . , xn,σn, xk),

xi = ((x1
i , f 1

i ), (x2
i , f 2

i )), i = 1,2, . . . ,n, we have

1. there exist two pathstr1 andtr2 in Go ending with cycles, namely,

tr1 = ((x0,∅),σ0, (x1, f 1
1 ), . . . , (x1

k, f 1
k ),σk, . . . , (x

1
n, f 1

n ),σn, (x
1
k, f 1

k )),

tr2 = ((x0,∅),σ0, (x1, f 2
1 ), . . . , (x2

k, f 2
k ),σk, . . . , (x

2
n, f 2

n ),σn, (x
2
k, f 2

k )).

2. f 1
i = f 1

j and f 2
i = f 2

j for any i and j in {k,k+1, . . . ,n}.

Now we can define and proof I-diagnosability for a single failure type.
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Proposition 3.1 (I-diagnosability of a Single Failure Type).AssumeFF is a singleton with

FF = {F} and letΣF := {σ ∈ Σ | ψ(σ) = F} andΣF,I := I (F).

G is I-diagnosable forF if and only if for every cyclecl in Gd with

cl = (x1,σ1, x2, . . . , xn,σn, x1), n ≥ 1, xi = ((x1
i , f 1), (x2

i , f 2)), i = 1,2, . . . ,n such that

∃u0 ∈ Σ
∗
oΣF,I Σ

∗
o with δd(xd

0,u0) = x1 and f 1
Ind = F or f 2

Ind = F, with δd(xd
0,u0,Ind) = xInd =

(x1
Ind, f 1

Ind), (x2
Ind, f 2

Ind) andu0,Ind is the prefix ofu0 that ends with the indicator event,

we havef1 = f2.

Proof. For the necessity, supposeG is I-diagnosable, but there exists a cyclecl in Gd,

cl = (xk,σk, xk+1, . . . , xn,σn, xk), n ≥ k, xi = ((x1
i , f 1), (x2

i , f 2)), i = k,k + 1, . . . ,n such that

∃u0 ∈ Σ
∗
oΣF,I Σ

∗
o with δd(xd

0,u0) = xk and f 1
Ind = F or f 2

Ind = F, with δd(xd
0,u0,Ind) = xInd =

(x1
Ind, f 1

Ind), (x2
Ind, f 2

Ind) andu0,Ind is the prefix ofu0 that ends with the indicator event,

and we havef1 , f2.

This implies that there exists a pathtr in Gd ending with the cyclecl, i. e.,

tr = (xd
0,σ0, x1, . . . , xk,σk, xk+1 . . . , xn,σn, xk).

Then from Lemma 3.2 we know that there exist two pathstr1 andtr2 in Go with

tr1 = ((x0,∅),σ0, (x1, f 1
1 ), . . . , (x1

k, f 1),σk, . . . , (x
1
n, f 1),σn, (x

1
k, f 1)),

tr2 = ((x0,∅),σ0, (x1, f 2
1 ), . . . , (x2

k, f 2),σk, . . . , (x
2
n, f 2),σn, (x

2
k, f 2)).

Further, from Lemma 3.1, we have∃u1v∗1,u2v∗2 ∈ L(G) such that

po(u1) = po(u2) = σ0, . . . ,σk+1, po(v1) = po(v2) = σk, . . . ,σn

and

{ψ(σ) | σ ∈ ui ,ψ(σ) , ∅} = {ψ(σ) | σ ∈ uivi ,ψ(σ) , ∅} = fi , i = 1,2.

Without loss of generality, sincef1 , f2, we assume f1 = {F}, f2 = ∅. Since ∃u0 ∈

Σ∗oΣF,I Σ
∗
o with δd(xd

0,u0) = xk, we can chooseu1 = u0. For any integernk, we can choose another

integerl such that‖u0vl
1‖ > nk. Now we havepo(u2vl

2) = po(u0vl
1) andσF < u2vl

2, σI ∈ u2vl
2. This

violates I-diagnosability and contradicts the hypothesis. So the necessity holds.

For the sufficiency, suppose for every cyclecl in Gd,

cl = (x1,σ1, x2, . . . , xn,σn, x1), n ≥ 1, xi = ((x1
i , f 1), (x2

i , f 2)), i = 1,2, . . . ,n such that

u0 ∈ Σ
∗
oΣF,I Σ

∗
o with δd(xd

0,u0) = x1 and f 1
Ind = F or f 2

Ind = F, with δd(xd
0,u0,Ind) = xInd =

(x1
Ind, f 1

Ind), (x2
Ind, f 2

Ind) andu0,Ind is the prefix ofu0 that ends with the indicator event,
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it holds thatf1 = f2. From Definition 3.2 we know that all such cycles satisfy I-diagnosability.

Now let f1 , f2. Again, without loss of generality, we assumef1 = {F}, f2 = ∅. From Lemma 3.2

we know that the hypothesis implies that

∀x= ((x1, f 1), (x2, f 2)) ∈ Xd

x is

(a) contained in a loop only if∄u0 ∈ Σ
∗
oΣF,I Σ

∗
o with δd(xd

0,u0) = x. This case does not violate

I-diagnosability.

(b) not contained in a loop and∃u0 ∈ Σ
∗
oΣF,I Σ

∗
o with δd(xd

0,u0) = x. The hypothesis further

implies that for any state sequence (x1, x2, . . . , xk) in Gd with xi = ((x1
i , f 1

i ), (x2
i , f 2

i )) for 1≤

i ≤ k, if f 1
i , f 2

i for all i ∈ {1,2, . . . ,k}, then the length of the state sequence is bounded by

the number of states inGd, i. e.,k≤ |Xd|.

Now let s be a trace inL(G) with a F-type failure event, i. e.,ψ(sf ) = F, we claim that

∀v = st ∈ L(G) with |t| > |Xd| · (|X| − 1), ∀w ∈ L(G) with po(w) = po(v), there is aF-type

failure event contained inw.

From above, for any statex ∈ Xd that can be reached fromxd
0 by executingpo(s) in Gd,

we have that any state sequence starting fromx in Gd, a statey = ((y1, f 1), (y2, f 2)) ∈ Xd

with f 1 = f 2 can be reached within|Xd| − 1 steps. This implies that∀v = st ∈ L(G) with

‖po(t)‖ > |Xd| −1, ∀w ∈ L(G) with po(w) = po(v), there is aF-type failure event contained

in w. Further from the assumption that no unobservable cycles exist inG, each observed

event inpo(t) can be preceded by at most|X| −1 unobserved events. It follows that for the

tracet above,|t| ≤ (|po(t)|+1) · (|X| −1), i. e.,|po(t)| ≥ |t|
|X|−1 −1. So if |t| > |Xd| · (|X| −1), then

|po(t)| ≥ |t|
|X|−1 −1> |Xd|·(|X|−1)

|X|−1 −1= |Xd|−1, establishing our claim. It follows from 3.2 thatG

is I-diagnosable.

Note that we have assumed implicitly that|X| > 1; otherwise if|X| = 1, then from the as-

sumption of no unobservable loops, no transition labelled by a failure eventexists, so that

the system is trivially I-diagnosable.

(c) not contained in a loop and∄u0 ∈ Σ
∗
oΣF,I Σ

∗
o with δd(xd

0,u0) = x. As stated above, any state

sequence (x1, x2, . . . , xk) in Gd with xi = ((x1
i , f 1

i ), (x2
i , f 2

i )) for 1 ≤ i ≤ k, if f 1
i , f 2

i ∀i ∈

{1,2, . . . ,k}, is bounded by|Xd| before the system turns into a loop. From the assumption

of liveness ofG, the construction ofGd and the assumption of no unobservable loops we

know thatGd is live as well. So, if no indicator event occurs before the system turns intoa

loop we pass on to case (a), otherwise case (b)—both in a bounded number of transitions.

So the sufficiency holds. �
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From this I-diagnosability is verified as follows.

Theorem 3.2 (I-Diagnosability). G is I-diagnosable if and only ifG is I-diagnosable for all

Fi∈ F .

This theorem directly follows from Proposition 3.1 by applying it to all failure types separately.

To illustrate the test of I-diagnosability as explained in Algorithm 3.2, considerthe systemG

depicted in Figure 3.7.σuo is an unobservable event andσ f 1,σ f 2 are unobservable failure events.

Let ψ(σ f 1) = F1, ψ(σ f 2) = F2 andI f (σ f 1) = σI1, I f (σ f 2) = σI2.

Figure 3.8 and Figure 3.9 display the automataGo andGd for both failure types. InGd, note that for

failure typeF1 there does not exist an offending cycle as described in the last step of Algorithm 3.2

because the indicator eventσI1 does not occur after the failure eventσ f 1. Thus, the systemG is

I-diagnosable with respect to failure typeF1.

On the other hand, for failure typeF2 there exists an offending cycle inGd at state (6N,6F2).

So, I-diagnosability is violated for failure typeF2 and it follows from Theorem 3.2 thatG is not

I-diagnosable.

1 2

3

4

5

6

7

δ

β

β γ
σ f 1

σ f 2

σI1

σI2

σI2

σuo

G

Figure 3.7: AutomatonG for illustration of I-diagnosability.

3.4 Implementation in libFAUDES

The diagnosis methods and diagnoser computation as elaborated in the previous sections were

integrated in the libFAUDES C++ software library [1] in the scope of this thesis. The library is

based on the Standard Template Library (STL) and implements data structuresand algorithms for

finite automata and regular languages. Since it offers a powerful plug-in mechanism, the plug-in

diagnosiswas implemented for the integration of the discussed methods in the library.

3.4.1 Automata and Sets in libFAUDES

For better understanding of the diagnosis plug-in, we give a short introduction to the automata

classes available in libFAUDES (see also Figure 3.10).
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(a)Go for failure typeF1.
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7F1,7N

7F1,7F1

Gd

(b) Gd for failure typeF1.

Figure 3.8: I-diagnosability test automata for failure typeF1.

Type is the base class for all libFAUDES objects and provides a uniform I/O interface which

supports reading and writing of the object configuration of derived classes. It inheritsvGenerator

which is a virtual version of a plain generator with no attributes and is the baseclass for all

generators.

TaGeneratorprovides functions that allow read and write access to the core members events,

states and transitions. It is a template class which is indicated by the template parameter T in

its identifier. Template classes enable generic programming techniques in C++ and thus are an

efficient way of defining and modifying properties of classes.TaGeneratorimplements template

parameters to specify attribute classes for

• a global attribute of the generator(class GlobalAttr),

• state attributes(class StateAttr),

• event attributes(class EventAttr),

• transition attributes(class TransAttr).

The attributes itself are classes derived fromAttributeVoid, AttributeFlags, or AttributeCFlags,

which inherit from one another in that order.AttributeVoid is the minimal interface an attribute
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(a)Go for failure typeF2.
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(b) Gd for failure typeF2.

Figure 3.9: I-diagnosability test automata for failure typeF2.

template parameter must provide and is the base class for all attribute implementations. Attibute-

Flagsprovides additional semantics for boolean flags andAttributeCFlagsmoreover models event

controllability and observability properties.

TheTcGeneratorinherits from theTaGeneratorand additionally adds an interface for events with

controllability and observability attributes, i. e., an event can now be controllable, observable or

forcible. A plain finite state automaton with controllability properties can be modelledby using

a TcGeneratorwith AttributeCFlagsfor the event attribute parameter andAttributeVoid for the

other parameters. For convenience, this type is defined ascGenerator.

The libFAUDES library furthermore provides several container classes—among them theTaIn-

dexSetwhich is a set of indices with attributes, and theTaNameSetwhich is a set of indices with

symbolic names and attributes. For further information the reader is referred to [1].

3.4.2 Diagnoser Structure and Handling

The structure of the diagnoser is defined in the template classfaudes::TdiagGenerator. As all the

classes and functions of the diagnosis plug-in,TdiagGeneratoris part of the namespacefaudes.

Figure 3.10 shows the the inheritance diagram of the classTdiagGeneratorthat is defined as
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faudes::TdiagGenerator< GlobalAttr, StateAttr, EventAttr, TransAttr >

faudes::TcGenerator< GlobalAttr, StateAttr, EventAttr, TransAttr >

faudes::TaGenerator< GlobalAttr, StateAttr, EventAttr, TransAttr >

faudes::vGenerator

faudes::Type

Figure 3.10: Inheritance diagramm of class TdiagGenerator.

templa te < c l a s s Globa lA t t r , c l a s s S t a t e A t t r , c l a s s Even tA t t r , c l a s s TransA t t r>

c l a s s Td iagGene ra to r : pub l i c TcGenera to r<Globa lA t t r , S t a t e A t t r , Even tA t t r ,

T ransA t t r> .

As its base classesTcGeneratorandTaGenerator, it is realized as a template class with the tem-

plate parametersGlobalAttr, StateAttr, EventAttr, andTransAttr. For the standard concept of di-

agnosers we use the configuration illustrated in Figure 3.11.

In the following the remaining classes of the plug-in are introduced.

TdiagGenerator
: public TcGenerator

<GlobalAttr,
StateAttr,

EventAttr,
TransAttr>

SymbolTable*
mpLabelSymbolTable;

AttributeDiagnoserState
: AttributeFlags

TaIndexSet<DiagLabelSet>
mDiagnoserStateMap;

AttributeFlags

AttributeCFlags

AttributeFailureTypeMap
: AttributeFlags

TaNameSet<AttributeFailureEvents>
mFailureTypeMap;

AttributeFailureEvents
: AttributeFlags

EventSet mFailureEvents;
EventSet mIndicatorEvents;

DiagLabelSet
: AttributeFlags

SymbolTable msLabelSymbolTable;
Idx msLabelN;
static Idx msLabelA;
static Idx msLabelRelN;
static Idx msLabelSpecViolated;
NameSet mDiagLabels;

Figure 3.11: The class structure of a standard diagnoser including the member variables.

class AttributeFailureEvents

AttributeFailureEventsis derived fromAttributeFlagsand has got the twoEventSetmember

variablesmFailureEventsandmIndicatorEvents. They store the set of failure eventsΣ f i and

the corresponding set of indicator eventsΣIi for a particular failure type.
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class AttributeFailureTypeMap

The classAttributeFailureTypeMapunites the failure and indicator events for all failure

types. It is derived fromAttributeFlagsand holds the member variablemFailureTypeMap

which is of the typeTaNameSet<AttributeFailureEvents>. The entries of thisNameSetare

failure type names with objects of classAttributeFailureEventsas attributes. Thus,Attribute-

FailureTypeMapcaptures the complete failure partition and indicator map for a generator. It

is used as the global attribute for our diagnoser.

class DiagLabelSet

This class is derived fromAttributeFlagsand provides methods to manipulate its major

member variablemDiagLabels. ThisNameSetstores the names of the diagnoser state labels

of a particular diagnoser state estimate. The handling is supported by additional members

as aSymbolTableand several predefined static label names.

class AttributeDiagnoserState

AttributeDiagnoserStateinherits fromAttributeFlags. It stores a complete diagnoser state

information in its membermDiagnoserStateMap. This TaIndexSet<DiagLabelSet> maps

the indices of diagnoser state estimates to instances ofDiagLabelSetsthat contain the corre-

sponding state labels. By usingAttributeDiagnoserStateas state attribute inTdiagGenerator

we assign the necessary information to every diagnoser state.

Compared toTcGenerator, there are no special requirements for events and transitions in the diag-

noser. Thus, event attributes are provided by the libFAUDES classAttributeCFlagsand transition

attributes byAttributeVoid.

For convenience this presented configuration of a diagnoser is definedasdiagGenerator:

t ypede f Td iagGenera to r<At t r i bu teFa i l u reTypeMap , A t t r i b u t e D i a g n o s e r S t a t e ,

A t t r i b u t e C F l a g s , A t t r i b u t e V o i d> diagGenerator .

Since the new classTdiagGeneratoris derived fromTcGenerator, it inherits its structure and

methods (for documentation see [1, C++ API]). Additionally, TdiagGeneratorprovides methods

to

• add failure types or the whole failure partition, respectively,

• query the failure type of a certain failure event,

• set or read the diagnoser state attributes.

Read and write access to the diagnoser is established with the standard libFAUDES token read-

er/writer and is executed by the member functionsRead()andWrite(), respectively. All the at-

tribute classes have got the same read/write mechanism and thus can easily be written to and read
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from genfiles. The followinggenfile is a curtailed version of the diagnoser shown in Figure 3.2b.

It illustrates the labelling of state 10, which contains the state estimates 7F1 and 12AF1. The fail-

ure partitionFailureTypespartitions the failure events in two sets,F1 andF2. Note, that there are

no indicator events, because I-diagnosability is not considered in this example.

1 <Generator>

2 " D iagnoser "

3

4 <Alphabet>

5 . . .

6 </Alphabet>

7

8 <Sta tes>

9 . . .

10 10

11 <GenStateEst imates>

12 7

13 <DiagLabels>

14 " F1 "

15 </DiagLabels>

16 12

17 <DiagLabels>

18 "A" " F1 "

19 </DiagLabels>

20 . . .

21 </ Sta tes>

22

23 <TransRel>

24 . . .

25 </TransRel>

26

27 < I n i t S t a t e s >

28 . . .

29 </ I n i t S t a t e s >

30

31 <MarkedStates>

32 </MarkedStates>

33

34 <Fai lureTypes>

35 " F1 "

36 <Fai lu reEvents>

37 " s igma_f1 "

38 </ Fai lu reEvents>

39 < Ind ica to rEven ts >

40 </ Ind ica to rEven ts >

41 " F2 "
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42 <Fai lu reEvents>

43 " s igma_f2 " " s igma_f2_dash "

44 </ Fai lu reEvents>

45 < Ind ica to rEven ts >

46 </ Ind ica to rEven ts >

47 </Fai lureTypes>

48

49 </Generator>

Of course, the single elements of a diagnoser can also be written separately. E. g., this following

output could be the failure partition of the example in Chapter 3.1.2.

1 <Fai lureTypes>

2 " F1 "

3 <Fai lu reEvents>

4 " s igma_f1 "

5 </ Fai lu reEvents>

6 < Ind ica to rEven ts >

7 "gamma"

8 </ Ind ica to rEven ts >

9 " F2 "

10 <Fai lu reEvents>

11 " s igma_f2 "

12 </ Fai lu reEvents>

13 < Ind ica to rEven ts >

14 " d e l t a "

15 </ Ind ica to rEven ts >

16 " F3 "

17 <Fai lu reEvents>

18 " s igma_f3 "

19 </ Fai lu reEvents>

20 < Ind ica to rEven ts >

21 " d e l t a "

22 </ Ind ica to rEven ts >

23 </Fai lureTypes>

Some other functions that do not belong directly to the diagnoser structure,but are still related to

the diagnosis framework are stored in separate files within thediagnosis plug-in. The function

vo id ComputeDiagnoser (cons t cGenerator& G , cons t A t t r i b u t e F a i l u r e T y p e M a p&

rAttrFTMap , diagGenerator& Gdiag) ;

requires acGeneratorand anAttributeFailureTypeMapas input and from there calculates the

diagnoser according to Chapter 3.2.
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3.4.3 Diagnosability Tests

This section describes the implementation of the diagnosability tests in libFAUDES. First the

implementation of the diagnosability test as shown in Chapter 3.1.1 is described, and then the

implementation of I-diagnosability as described in Chapter 3.1.2.

Testing for Diagnosability

The main function for testing standard diagnosability of a systemG is

bool I s D i a g n o s a b l e (cons t cGenerator& G , cons t A t t r i b u t e F a i l u r e T y p e M a p&

rFai lureTypeMap , s t r i n g& r R e p o r t ) .

It requires a generator, a failure type map and a report string as input parameters and returns the

test result as a boolean value.

The function IsDiagnosable () then calls MeetsDiagnosabilityAssumptions(const cGenerator& G, const

AttributeFailureTypeMap& rFailureTypeMap,string & rReport) to check whether

• all failure and indicator events are part of the generators alphabet,

• all failure events are unobservable,

• G is live,

• there do not exist cycles of unobservable events inG.

If all of these assumptions are met, the diagnosability test as described in Algorithm 3.1 is started.

In order to have linear complexity in the number of failure types, the algorithm isapplied to every

single failure type separately:

1. First, void ComputeGobs(const cGenerator& G, const string& rFailureType,const EventSet&

rFailureEvents ,diagGenerator& Go) is called to compute generatorGo. Starting from the

initial state with label N,ComputeReachability()determines the reachable states of the system

G with exactly one observable transition. Is is done by means of adepth-first search

(cp. [2]) that is aborted after the first observable event. The failure types which occur on

these traces are tracked and the new state estimates and occurring failure types are stored

as states inGo. This reachability search is done for every new state inGo until no further

states inG are reachable.

2. Then, void ComputeGd(const diagGenerator& Go, map<pair<Idx ,Idx>,Idx>& rReverseComposition

Map,cGenerator& Gd) computesGd by evaluating the parallel composition ofGo with itself.

SinceGd is implemented as acGenerator, i. e., its states do not carry any labels, the map-

ping information of the states is stored in themap<pair<Idx ,Idx>,Idx> reverseCompositionMap,

which can be used for further manipulations.
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3. Last, the function bool ExistsEvilCyclesInGd(cGenerator& Gd, const diagGenerator& Go,

map<pair<Idx ,Idx>,Idx>& rReverseCompositionMap,const string& rFailureType,string& rReport)

is called to check if there exist any cycles of states inGd that correspond to states in

Go with mutually different failure labels. Therefore the function parses through the

reverseCompositionMapand deletes all states inGd that correspond to states inGo with

the same failure label. Thenbool ExistsCycle (const cGenerator& G, string& rReport) checks if

there exist any cycles in the remaining automaton. If so, the systemG is stated not to be

diagnosable.

If, for all failure types, there do not exist any offending cycles inGd, the system is diagnosable and

IsDiagnosable ()returnstrue, otherwise it is not diagnosable andfalseis returned.

Testing for I-Diagnosability

Testing a system for I-diagnosability works pretty similar to the test of diagnosability. The core

function to run the test is

bool I s I d i a g n o s a b l e (cons t cGenerator& G , cons t A t t r i b u t e F a i l u r e T y p e M a p&

rFai lureTypeMap , s t r i n g& r R e p o r t ) .

It requires a generator, a failure type map (which contains both, failure and indicator events for

every failure type) and a report string as input parameters and returnsthe test result as a boolean

value.

As in the case of normal diagnosability the system has to fulfil the following assumptions which

are checked bybool MeetsDiagnosabilityAssumptions(const cGenerator& G, constAttributeFailureTypeMap&

rFailureTypeMap,string & rReport):

• all failure and indicator events have to be part of the generators alphabet,

• all failure events have to be unobservable,

• G has to be live,

• there should not exist any cycles of unobservable events inG.

If the system meets these requirements the test for I-diagnosability as described in Algorithm 3.2

is started. Since this algorithm is only defined for single failure types, we apply it to every failure

type separately. The difference to the code structure shown before is that in the last step we only

consider traces that start with an indicator event following a failure event.This is practically done

by pruningGd such that only those traces remain in the automaton, which can be viewed as an

additional step before the last step. Then, as before, states with unequal failure labels are deleted

and it is checked if there exist any cycles in the remaining graph.
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Thus, the code to test for I-diagnosability for an individual failure type does the following:

1. The generatorGo is calculated byComputeGobs().

2. ComputeGd()computesGd.

3. Starting for the initial state,TrimNonIndicatorTracesOfGd()extracts all traces that start with an

indicator event that follows a failure event. This is done by recursively deleting the tran-

sitions in every path ofGd until a transition with an indicator event that points to a state

containing a failure label is found.

4. ExistsViolatingCyclesInGd ()is called to check if there exist any cycles inGd that have unequal

failure labels. If so, the systemG is stated not to be I-diagnosable.

If, for all failure types, there do not exist any offending cycles inGd, the system is I-diagnosable

and IsDiagnosable ()returnstrue, otherwise it is not I-diagnosable andfalseis returned.
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Chapter 4

Diagnosability with respect to a

Specification

Beyond the diagnosability tests with respect to a failure partition that have been presented in

the last chapter, we are also interested in a method to test a DES’ diagnosabilitywith respect to

a specification language. Testing in the specification language framework ismore flexible than

testing with respect to failure types because now the complete behaviour of the system can be

modelled as desired in a specification language. Every violation of a the specification is equivalent

to the occurrence of a global failure. Qiu and Kumar [8] presented the notion of codiagnosability

for systems with several local diagnosers. We will use their definition for asingle diagnoser which

we calldiagnosability with respect to a specificationand will provide an algorithm to test it.

Note that, in the specification language framework, I-diagnosability is not ofinterest any more

because one can specify the behaviour of the system after each irregularity separately.

4.1 Definition and Testing Procedure

Given is a systemG and its generated languageL(G). The specification languageK ⊆ L is gener-

ated by the specification automatonH, i. e.,L(H) = K, whereK does not need to be prefix-closed.

Unlike before, in the specification frameworkG is allowed to contain deadlocking states and or

cycles of unobservable events.

Definition 4.1 (Language Diagnosability).Given the observation maskpo : Σ∗ → Σ∗o, a system

G is diagnosable with respect to the specificationK ⊆ L(G) if

(∃n ∈�)(∀s∈ L(G)−K)(∀st∈ L(G)−K, |t| ≥ n or st deadlocks)

⇒ (∀u ∈ p−1
o po(st)∩L(G), u ∈ L(G)−K).
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This definition means the following: Given a strings in L(G) that violates the specificationK and

another stringt such thatt is a sufficiently long extension ofs in the “faulty language” orst is

deadlocking. If every trace inL(G) that is indistinguishable fromst is part of the faulty language

L(G)−K, the systemG is said to be diagnosable with respect to the specificationK.

Obviously, a strings ∈ L(G) does not violate the specification ifs ∈ L(G) ‖ K, but violates the

specification ifs∈ L(G)−K. To verify diagnosability, we now have to check if there exists a string

in L(G)−K that is forever indistinguishable from a string inL(G) ‖ K. The following algorithm is

based on [5] and describes a method to test a systemG for diagnosability with respect to a given

specificationK.

Algorithm 4.1 (Diagnosability test with respect to a specification).For a given system

G= (X, Σ, δ, x0 Xm) with an observation maskpo : Σ∗→ Σ∗o do the following:

1. Construct an automatoñG = (X̃, Σ, δ̃, x0, X̃m) with L(G̃) = L(G) and Lm(G̃) = L(G)−K =

L(G)∩Kc. Now every trace inL(G) that violates the specification will lead to a marked state

in L(G̃).

2. FromG̃, construct a finite state automatonGo = (Xo, Σo, δo, xo
0, X

o
m) with languageL(Go) =

po(L(G̃)) as follows:

• Xo = {(x, f ) | x ∈ X1 ∪ {xo}, f ⊆ {F}} is the finite set of states, whereX1 = {x ∈ X |

δ(x′,σ) = x, with x′ ∈ X, po(σ) , ε} is the set of states inG that can be reached through

an observable transition, andf is the label which indicates that a violation of the spec-

ification has occurred.

• Σo, the set of observable events, is the set of events labels forGo.

• δo is the set of transitions.δo((x, f ),σ) = (x′, f ′) if and only if there exists a path

(x,σ1, x1, . . . ,σn, xn,σ, x′), n≥ 0 in G̃ such that∀i ∈ {1,2, . . . ,n}, po(σi) = ε, po(σ) =σ,

f ′ = ∅ if x′ < X̃m, f ′ = F if x′ ∈ X̃m; otherwiseδo((x, f ),σ) is not defined.

• xo
0 = (x0,∅) ∈ Xo is the initial state.

• Xo
m = ∅.

3. ComputeGd =Go ‖Go = (Xd, Σo, δd, xd
0, X

o
m), where

• Xd = {(xo
1, x

o
2) | xo

1, x
o
2 ∈ Xo×Xo} is the set of states.

• Σo is the set of events labels forGd.

• δd is the set of transitions.δd((xo
1, x

o
2),σ) = (yo

1,y
o
2) if and only if δo(xo

1,σ) = yo
1 and

δo(xo
2,σ) = yo

2; otherwiseδd((xo
1, x

o
2),σ) is not defined.

• xd
0 = (xo

0, x
o
0) ∈ Xd is the initial state.

• Xo
m = ∅.
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4. Check whether

(a) there exists an unmarked state inG̃ with a trace of unobservable transitions that dead-

locks in the marked states ofG̃ or leads to a cycle of unobservable events in the marked

states ofG̃,

(b) there exists a statex = ((x1, f 1), (x2, f 2)), f 1
, f 2, in Gd, such that inG̃, statex1 or

x2 leads with an unobservable trace to a cycle of unobservable events in the marked

states,

(c) there exists a statex = ((x1, f 1), (x2, f 2)) in Gd, such thatf 1
, f 2 and state (xi , f i),

f i = F, i = 1,2 deadlocks inGo,

(d) there exists inGd a cyclecl = (x1,σ1, x2, . . . , xn,σn, x1), n ≥ 1, xi = ((x1
i , f 1

i ), (x2
i , f 2

i )),

i = 1,2, . . . ,n, such thatf 1
1 , f 2

1 .

If any of these exist, the systemG is not diagnosable with respect to the specificationK;

otherwise it is diagnosable with respect to the specificationK.

To illustrate the test according to the algorithm and the new conditions (a), (b)and (c) stated in

step 4, consider the following examples. The eventsσ f andσuo are unobservable, while the other

events are observable.

Figure 4.1 depicts a systemG and a specification automatonH with L(H) = K ⊆ L(G). G̃ marks

L(G)−K which is the part ofL(G) that violates the specificationK. Go records every violation

of the specification as long as there follows an observable event and labels it as a failure. The

automatonGd is the parallel composition ofGo with itself as before. Since there does not exist any

cycles or deadlocking state as stated in the conditions of the last step in Algorithm 4.1, this system

is diagnosable with respect to the specificationK.

As stated in condition (a), diagnosability can be violated, if a system contains aunobservable trace

that leads from an unmarked state into an unobservable loop and thereby violates the specification.

In this caseGo andGd do not capture the occurrence of the failure, but it can be identified inG̃: The

example given in Figure 4.2 shows an unobservable transition with eventσ f from the unmarked

state 3 inG̃ to an unobservable loop at state 4. This is not detectable for a diagnoser and hence this

system is not diagnosable.

An example that violates condition (b) is considered in Figure 4.3. Here, there exists an unobserv-

able loop in the marked states ofG̃ which is reachable through an unobservable trace from the

marked state 5. FromGd, we know that the specification violation has not yet been identified at

state 5 and thus the systemG is not diagnosable.

To illustrate condition (c), Figure 4.4 depicts the analysis of a systemG which is not diagnosable

because of a deadlocking marked state inGo. The deadlocking states (3N,5F) and (5F,3N) inGd
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are evidence of two traces inGo, where one trace is faulty and the other one is not. Since 5F

is deadlocking inGo, diagnosability is violated. Note, that in this example, the self-loop of the

unobservable eventσuo does not violate diagnosability as it is allowed by the specification.

4.2 Implementation in libFAUDES

To test a system for diagnosability with respect to a specification, we provide the function

bool I s D i a g n o s a b l e (cons t cGenerator& G , cons t cGenerator& H , s t r i n g& r R e p o r t )

which requires a generatorG and a specification automatonH as input parameters and returns

the test result as boolean. In case of a negative test result, the reportstring returns additional

information about the failure condition.

IsDiagnosable ()first marks all states inG andH. In order to make sure that transitions of events in

G that do not occur in the specification do not violate diagnosability, self-loops of all those events

are inserted in all states ofH.

Next, G̃ with Lm(G̃) = L(G)−K = L(G)∩Kc is evaluated by computing the parallel composition

of G and the automaton returned byLanguageComplement(H). (Note that the parallel composition

can be used here as equivalent of the language intersection because both automata have got the

same alphabet.) ThenComputeGobs(const cGenerator& G̃, diagGenerator& Go) generatesGo which is

done in a similar manner as in Chapter 3.4.3 for diagnosability with respect to a failure parti-

tion. As it will be needed for the decentralized diagnosis (cp. Chapter 5.2)also nondeterministic

automata with multiple initial states are allowed as input parameters and there exists aunique

failure label F which is used for every violation of the specification. Next,Gd is calculated

by ComputeGd(const diagGenerator& Go, map<pair<Idx ,Idx>,Idx>& rReverseCompositionMap,cGenerator&

Gd) which computes the parallel composition ofGo with itself and stores the mapping information

in thereverseCompositionMap, as before.

To determine diagnosability the conditions stated in step 4 of Algorithm 4.1 have to be checked:

1. bool ExistsViolatingCyclesInGd (cGenerator& Gd, const diagGenerator& Go,

map<pair<Idx ,Idx>,Idx>& rReverseCompositionMap,const string& rFailureType,string& rReport)

checks if there exist any cycles of states inGd that correspond to states inGo with

mutually different failure labels. Therefore the function deletes all states inGd and entries

in rReverseCompositionMapthat correspond to states inGo with the same failure label—the

remaining automaton ofGd is now calledGd,pruned. bool ExistsCycle (const cGenerator& G,

string& rReport) then checks if there exist any cycles inGd,pruned.

2. bool IsComplete(const cGenerator& Go, StateSet& rDeadStates)extracts all deadlocking states from

Go and then it is checked whether one of these states carries a failure label inGd,pruned. This
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is done by parsing through the prunedrReverseCompositionMapand reading the failure labels

of the correspondingGo states.

3. To check for unobservable deadlocks in the marked states ofG̃ which result from an unob-

servable trace starting in the unmarked states, we first usebool IsComplete(const cGenerator&

G̃, StateSet& rDeadStates)to extract all deadlocking states from̃G. Among these, we then

extract the marked states andComputeBackwardReachability(const cGenerator& G̃, const Idx state ,

const EventSet& rConsideredEvents,StateSet& rReachStates)finds all states that have unobservable

traces leading to these marked deadlocks. Now we check if there exist anyunmarked states

among the start states of the unobservable traces.

4. To determine if there exists an unobservable cycle that violates diagnosabil-

ity, we first extract all starting states of unobservable cycles inG̃. Therefore

a copy is made, all observable transitions are deleted andCycleStartStates (const

cGenerator& G̃, StateSet& unobsCycleOrigins)saves all starting states of cyclesunobsCycleOrigins.

Addtionally, ComputeBackwardReachability(const cGenerator& G̃, const Idx state , const EventSet&

rConsideredEvents,StateSet& rReachStates)finds all states iñG that lead with unobservable traces

to one of these states and adds them tounobsCycleOrigins. Now it has to be checked if any of

the states inunobsCycleOrigins

(a) is not marked inG̃,

(b) forms part of a state label inGd,pruned. This is done by parsing though the prunded

rReverseCompositionMapand evaluating the corresponding state labels ofGo.

If any of these tests is positive,IsDiagnosable ()returnsfalse, otherwisetrue.
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(d) The diagnoserGo represents the observable behaviour ofG̃ and imple-

ments every transition into a marked state as a failure F.
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(e) The automatonGd =Go ‖Go.

Figure 4.1: Diagnosability test automata for the systemG with respect to the specificationK =

L(H). G is diagnosable because none of the conditions of the last step of Algorithm 4.1 is fulfilled.
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Figure 4.2: Test of diagnosability of systemG with respect toK = L(H). There exists an unobserv-

able violation of the specification and thusG is not diagnosable.
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Figure 4.3: Test of diagnosability of systemG with respect toK = L(H). There exists an unob-

servable cycle in the marked states ofG̃ that has an unobservable origin at state 5. Since state 5 is

ambiguous inGd (cp. states (3N,5F) and (5F,3N)),G is not diagnosable with respect toK.
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Figure 4.4: Diagnosability test of the SystemG. There exists a deadlock at state 5 inGo. From

Gd, the system status is uncertain at the deadlock because of the ambiguous states (3N,5F) and

(5F,3N). Hence, the systemG is not diagnosable with respect toK.
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Chapter 5

Decentralized Diagnosis

So far, we looked at methods to determine diagnosability for an entire system with an entire failure

partition or an entire specification. For large-scale plants, these approaches have the drawback that

their algorithms become computationally infeasible. Therefore, it stands to reason to extend the

notion of diagnosability for modular plants and plants divided into subsystems,respectively.

In this chapter we will proposedecentralized diagnosis for local specificationsas a method for an

abstraction based failure diagnosis of DES.

5.1 Related Work

In [8], Qiu et al. presented the notion ofcodiagnosability. It applies to a global representation

of the plantG which is observed bym local diagnosers with respect to a global specificationK.

Each local diagnoser uses its own observations of the system and no communication between the

diagnosers is needed. Codiagnosability requires that any violation of the specification is detectable

within a bounded number of transitions ofG by at least one local diagnoser. The authors also

introduce codiagnosability in the failure event framework and present a polynomial algorithm to

test for codiagnosability. Furthermore they extend their notion tostrong codiagnosabilitywhich

additionally requires the detection of non-faulty traces within a bounded number of transitions.

Zhou et al. [17] focus on a modular plant observed with regards to a global specification. They

introduce the notion ofmodular diagnosabilitythat allows to diagnose every failure using a set

of local diagnosers. The computation of these diagnosers only dependson the local subplants and

thus does not require the construction of the global plant model. A system istested for modular

diagnosability by reducing it to codiagnosability, hence the construction of the overall plant model

is needed for testing procedure.
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5.2 Decentralized Diagnosis for Modular Plant and Specification

Consider a modular plant that consists ofm subplantsGi = (Xi , Σi , δi , x0,i), i ∈ I := {1, . . . ,m} over

the alphabetsΣi such that the overall plantG = (X, Σ, δ, x0) is defined asG := ‖i∈IGi . We havem

locally diagnosability specificationsKi ⊆ Σ
∗
i , i ∈ I such that the overall diagnosability specification

evaluates toK := ‖i∈IKi .

We now want to verify diagnosability ofG with respect toK without having to evaluateG andK.

5.2.1 Decentralized Diagnosability for Individual Subsystem

We present a method that allows to conclude diagnosability forG from a local computation. In

summary, we evaluate an abstraction of the local plant that incorporates thebehaviour of the other

subsystems. In this abstraction, we replace all transitions of events that donot form part of the local

alphabet byε-transitions and compute the parallel compositions of the original local plant with the

abstraction. Hereby, we get another version of the local plant (with a usually bigger state space)

that on its part also captures the behaviour of the other subsystems. With a generalized version of

the language diagnosability notion, we are then able to verify decentralized diagnosability for the

local plant and its local specification.

To begin with, defineΣ∩ :=
⋃

i, j∈I,i, j(Σi ∩Σ j) as theset of shared eventsand the corresponding

local sets of shared eventsΣi,∩ = Σ∩ ∩Σi , i ∈ I. We define a version of the L-observer condition

in [15].

Definition 5.1 (Loop-preserving Observer). Let p: Σ∗→ Σ̂∗ be the natural projection for̂Σ ⊆ Σ

and letG be an automaton. Thenp is a loop-preserving observer forL(G) with the boundN if for

all s∈ L(G) andt ∈ Σ̂∗

p(s)t ∈ p(L(G))⇒∃u ∈ Σ∗ such thatsu∈ L(G) andp(su) = p(s)t

and for all suchu, |u| < N |t|.

This definition states the following: Given a traces generated by the system and a tracet within

the abstraction language. Then, the natural projectionp is a loop-free observer with boundN if

for all extensions of the abstracted traces in the abstraction language it holds that there also exists

an extensionu in the system’s language such that in the abstraction,suprojects onto the extended

string in the abstraction. Additionally,u is bounded by|u| < N |t|. Hence, the extensionu in the

system’s language cannot be arbitrarily long and it follows, that every loop in the system also has

to appear in the abstraction.

Now, we select one particular plantG j , j ∈ I and writeI j := I−{ j} andGI j
:= ‖mi=1,i, jGi over the

alphabetΣI j
:=
⋃

i∈I j
Σi for the composition of the remaining components. Then, we define the

alphabetŝΣi ⊇ Σi,∩ that are as small as possible but such that the natural projectionspi : Σ∗i → Σ̂
∗
i



CHAPTER 5. DECENTRALIZED DIAGNOSIS 42

are loop-preserving observers for the local plantsGi , i ∈ I j . The overall abstraction alphabet is

Σ̂I j
:=
⋃

i∈I j
Σ̂i , the overall natural projection ispI j : Σ

∗
I j
→ Σ̂∗

I j
. The abstraction̂GI j over Σ̂I j of

the remaining plantGI j is computed by evaluating

L(ĜI j ) = p(L(GI j )) = ‖i∈I j pi(L(Gi)).

We use loop-preserving observers for the abstraction of the local plants Gi , i ∈ I j , in order to

ensure that the system’s local loops that could violate diagnosability by executing arbitrarily long

strings are incorporated in the abstraction.

It holds thatpI j is a loop-preserving observer if allpi , i ∈ I j are loop-preserving observers.

Lemma 5.1 (Loop-preserving Observer).For i ∈ I j , let Gi be automata over the alphabetΣi

and define the natural projectionspi : Σ∗i → Σ̂
∗
i for Σ̂i ⊆ Σi . Also let GI j , ΣI j and pI j be defined

as above. ThenpI j is a loop-preserving observer forGI j with the boundNI j
:=
∑

i∈I j
Ni if pi is a

loop-preserving observer forGi with the boundNi for i ∈ I j .

Proof. Assume thatpi is a loop-preserving observer forGi for i ∈ I j and lets∈ L(GI j ), t ∈ Σ̂∗
I j

such thatp(s)t ∈ p(L(GI j )). It has to be shown that there isu ∈ Σ∗ such thatsu∈ L(GI j ) and

p(su) = p(s)t, and that for all suchu, |u| < NI j |t|.

Sinces∈ L(GI j ), si := θi(s) ∈ L(Gi) for i ∈ I j . Similarly, with ti := θ̂i(t), pi(si)ti ∈ pi(L(Gi)). Hence,

for all i, there is aui ∈ Σ
∗
i such thatsiui ∈ L(Gi) andpi(siui) = pi(si)ti . Then,‖i∈I j ui , ∅ and there

is u ∈ ‖i∈I j ui such thatp(u) = t. It remains to show that for all suchu, |u| < NI j |t|. By assumption,

we know that for alli, |ui | < Ni |ti |. Furthermore,u ∈ ‖i∈I j ui implies that|u| ≤
∑

i∈I j
|ui |. Hence,

|u| <
∑

i∈I j
Ni |ti | ≤

∑

i∈I j
Ni |t| = NI j |t|. �

We now derive a method to find a substitute for a chosen subplantG j that incorporates the

behaviour of the other subplants. Therefore, a the nondeterministic automaton H j = (Qi , Σi ∪

{ε}, νi , Q0,i , Xm,i) is computed for the chosen subplantG j by the following procedure.

Algorithm 5.1 (Computation of H j).

1. Find an alphabet̂Σ j ⊇ Σ j,∩ which is as small as possible but such thatp j : Σ∗j → Σ̂
∗
j is an

L-observer (loop-preserving observer is not required).

2. ComputeĜ j such thatL(Ĝ j) = p j(L(G j)) and the overall abstraction̂G := Ĝ j ‖ ĜI j .

3. Determine the local view of̂G for the local plantG j . Therefore, compute the automaton

Ĥ j from Ĝ by replacing all transitions in̂G with events that are not in̂Σ j by ε-transitions.

Hence, the transition structure and the state space ofĤ j is the same as for̂G. However,Ĥ j

can be nondeterministic due to theε-transitions.

4. DefineH j :=G j ‖ Ĥ j . Hence, usinĝH j , the behaviour of the other local plants is incorporated

in H j .
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We suggest to useH j and the local specificationK j to perform the diagnosability check. SinceH j

is nondeterministic, we propose a generalization of the diagnosability condition. Our formulation

holds for a general nondeterministic automatonG. It incorporates the fact that multiple states with

different futures can be reached after each string inL(G). Then, in order to be diagnosable, all

possible futures in the nondeterministic automatonG have to fulfil diagnosability. Note that this

condition reduces to Definition 4.1 if the automatonG is deterministic.

Definition 5.2 (Generalized Language Diagnosability).Define the natural projectionpo : Σ∗→

Σ∗o for Σo ⊆ Σ. G is generalized diagnosable with respect toK if

(∃n ∈�)(∀s∈ L(G)−K)(∀x ∈ δ(x0, s))(∀t such thatδ(x, t)!, |t| ≥ n or st deadlocks)

⇒ (∀u ∈ p−1
o po(st) such thatδ(x0,u)! for somex0 ∈ X0, u < K)

UsingH j and Definition 5.2, we now provide a sufficient condition for decentralized diagnosability

for an individual subsystem.

Proposition 5.1 (Decentralized Diagnosability for individual subsystem). AssumeH j is con-

structed as described above. It holds thatG j is diagnosable with respect tôK j := K j ‖ L(G) if

(a) H j is generalized diagnosable with respect toK j and

(b) every cycle inĜ contains at least one event inΣ̂ j .

Proof. First, we introduce several natural projections needed in the proof:pi : Σ∗i → Σ̂
∗
i , θi : Σ∗→

Σ∗i , θ̂i : Σ̂∗→ Σ̂∗i , po,i : Σ∗i → Σ
∗
o,i , θo,i : Σ∗o→ Σ

∗
o,i , p: Σ∗→ Σ̂∗ with Σ̂ :=Σ j∪ Σ̂I j . Here,Σo, j :=Σ j∩Σo

is the local set of observable events.

We assume thatK j is generalized diagnosable with respect toH j =G j ‖ Ĥ j and want to show that

G is diagnosable with respect tôK j . Let s∈ L(G)− K̂ j and choose ˆn j := n j · |X|, wheren j is taken

from the generalized diagnosability test ofK j andH j and|X| is the state count ofG. Now assume

thatst∈ L(G) and|t| > n̂ j or st deadlocks but∃u∈ p−1
o po(st)∩L(G) such thatu∈ K̂ j , i. e.,G is not

diagnosable with respect tôK j .

If |t| > n̂ j , sincen̂ j = n j · |X|, t passes at leastn j cycles inG. Then it must hold that at least one

event inΣ j must occur in each such cycle. Assume the contrary. Then, the cycle onlycontains

events inΣ−Σ j . Then, for alli ∈ I j such that the cycle contains events inΣi , it holds that there

are corresponding cycles inGi . Since allpi for i ∈ I j are loop-preserving observers, the respective

cycles must also appear in the associatedĜi . But then, a corresponding cycle with events only in

Σ̂I j − Σ̂ j must exist inĜI j , which also implies the existence of a cycle with events only inΣ̂− Σ̂ j

in Ĝ. But this contradicts the assumption that each cycle inĜ must contain at least one event in

Σ̂ j . Hence, each cycle inG must contain events inΣ j .

Sincet passes at leastn j cycles inG, this implies thatt j := θ j(t) contains at leastn j events inΣ j ,

i. e., |t j | ≥ n j . Furthermore, it follows from̂t := p(t) ∈ Ĝ and p j(t j) = θ̂ j(t̂), and the construction
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of Ĥ j from Ĝ that t j ∈ H j = G j ‖ Ĥ j . In addition, it holds thatsj := θ j(s) ∈ L(H j)−K j , andu ∈

p−1
o po(st)∩ L(G), while u ∈ K̂ j implies thatu j := θ j(u) ∈ p−1

o, j po, j(sj t j)∩ L(H j) (concluded from

u ∈ θ−1
j p−1

o, j po, jθ j(u) = θ−1
j p−1

o, jθo, j po(u) = θ−1
j p−1

o, jθo, j po(st) = θ−1
j p−1

o, j po, jθ j(st)) and u j ∈ K j . Now

let q ∈ ν j(qo, j , sj) such thatqt j ∈ ν j(q, t j) exists (both states exist sincesj t j ∈ L(H j)). Hence, for
∣

∣

∣t j

∣

∣

∣ > n j , we have aq ∈ ν j(qo, j , sj) such thatν j(q, t j)! but there is au j ∈ p−1
o, j po, j(sj t j) such that

ν j(qo, j ,u j)! andu j ∈ K j , which contradicts thatH j is generalized diagnosable with respect toK j .

If st deadlocks inG, it can be shown that also ˆst̂ := p(s)p(t) deadlocks inĜ. Assume that there is

σ ∈ Σ̂ such that ˆst̂σ ∈ L(Ĝ). Then, there must be av ∈ Σ∗ such thatstvσ ∈ L(G) becausep is an

L(G)-observer, which contradicts thatst deadlocks inG. Definex̂ := δ̂(x̂0, ŝt̂) as the corresponding

deadlock state inĜ. Furthermore, sincest ∈ θ−1
j (sj t j) deadlocks inG, it must hold that either

(i) ∄σ ∈ Σ j − Σ̂ j such thatsj t jσ ∈ L(G j) or (ii) for all σ ∈ Σ̂ j such thatsj t jσ ∈ L(G j), there is a

k , j with σ ∈ Σk but skσ < L(Gk). We denote the corresponding state inG j asx j := δ j(x0, j , sj t j).

We now consider the parallel composition ofG j andĤ j , while respecting the construction ofĤ j

from Ĝ. It is readily observed that the state (x j , x̂) is reachable inH j =G j ‖ Ĥ j , asθ̂ j(ŝt̂) = p j(sj t j).

In addition, (x j , x̂) is a deadlock state inH j since neither further events inΣ j − Σ̂ j (case (i)) nor

further events in̂Σ j (case (ii)) are possible. From above, we recall that at the same timeu j := θ j(u) ∈

p−1
o, j po, j(sj t j)∩ L(H j) andu j ∈ K j . Now, there are two cases. If|t j | > n j , the above discussion for

|t| > n̂ j shows that diagnosability of̂K j for G holds. Otherwise, we chooseq j ∈ ν j(qo, j , sj) such

that (x j , x̂) ∈ ν j(q j , t j). Hence,q j ∈ ν j(qo, j , sj) and (x j , x̂) ∈ ν j(qo, j , sj t j) deadlocks inH j , while

u j ∈ p−1
o, j po, j(sj t j) such thatν j(qo, j ,u j)! andu j ∈ K j . Again, this contradicts thatH j is generalized

diagnosable with respect toK j .

Together, it holds thatG must be diagnosable with respect toK̂ j . �

5.2.2 Decentralized Diagnosability for the Overall System

Combining decentralized diagnosability for all local plantsGi and specificationsKi , we can state

a sufficient condition for decentralized diagnosability forK := ‖mi=1Ki andG := ‖mi=1Gi .

Theorem 5.1 (Decentralized Diagnosability).Assume thatK := ‖mi=1Ki andG := ‖mi=1Gi are given

as above. ThenG is diagnosable with respect toK if Proposition 5.1 holds for alli ∈ I.

Proof. Let s ∈ L(G)− K and choosen := maxi n̂i , wheren̂i is taken from the proof of Proposi-

tion 5.1. Now assume thatt ∈ Σ∗ such thatst∈ L(G) and either (i)|t| > n or (ii) st deadlocks. Also

let u ∈ p−1
o po(st)∩L(G). To prove diagnosability, we have to show thatu ∈ L(G)−K.

First observe thats∈ L(G)−K = ‖mi=1L(Gi)−‖mi=1K i implies that for somej, sj < K̂ j = K j ‖ L(G).

Now assume that (i) holds, i. e.,st ∈ L(G) and |t| > n but there isu ∈ p−1
o po(st)∩ L(G)∩K, i. e.,

G is not diagnosable with respect toK. Then,u ∈ p−1
o po(st)∩ L(G)∩ θ−1

j (K j) = p−1
o po(st)∩ K̂ j ,
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while |t| > n≥ n̂ j . But this means thatG is not diagnosable with respect tôK j , which contradicts

the assumption that Proposition 5.1 holds forj.

Finally assume that (ii) holds, i. e.,st∈ L(G) deadlocks but there isu ∈ p−1
o po(st)∩L(G)∩K, i. e.,

G is not diagnosable with respect toK. Again,u ∈ p−1
o po(st)∩ L(G)∩ θ−1

j (K j) = p−1
o po(st)∩ K̂ j ,

while st deadlocks. But this means thatG is not diagnosable with respect tôK j , which contradicts

the assumption that Proposition 5.1 holds forj. �

5.2.3 Illustration of the Conditions in the Decentralized Diagnosability Test

We now provide several examples to illustrate the relevance of the conditionsin Algorithm 5.1

and Proposition 5.1 within our method to validate a system’s decentralized diagnosability.

In the following, we call a subsystemGi locally diagnosableif it holds thatGi is diagnosable with

respect to its local specificationKi according to Definition 4.1. The specificationK is generated by

an automaton denoted asC, i. e.,L(C) = K. Additionally, all events are assumed to be observable,

exceptσ f which is unobservable.

1 2 3
αα

β σ f

G1

(a) The local subsystemG1.

1 2 3
α

βγ

G2

(b) The local subsystemG2.

1 2
α

β

C1

(c) The local specification automa-

tonC1.

1 2 3
α

βγ

C2

(d) The local specification automatonC2.

α

α

αα β

β

β
1N 2N 2F1N 2F 1F 2F

Gdiag

(e) The diagnoserGdiag of G1.

1 2 3 4 5 6
α

α

βγ σ fσ f

G

(f) The overall systemG =G1 ‖G2.

Figure 5.1: Even thoughG1 andG2 are locally diagnosable, decentralized diagnosability does not

hold forG =G1 ‖G2 becauseG2 inhibits the detection of the specification violation ofG1.
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Firstly, we show that not including the behaviour of the other subsystems bythe abstraction pro-

cedure can lead to a wrong test result. In other words, local diagnosability of all subsystems is

not sufficient for decentralized diagnosability of the overall system in our approach. Consider a

systemG consisting of two subsystemsG1 andG2 as depicted in Figure 5.1a and (b). The speci-

ficationsK1 andK2 are chosen as given in Figure 5.1c and (d). For simplicity,K2 = L(G2) so that

local diagnosability trivially holds forG2. From Definition 4.1 we know thatG1 is locally diag-

nosable with respect toK1. A violation of K1 is identified as soon asα occurs twice in a row (cp.

Gdiag in Figure 5.1e). However, from the overall system behaviour modelled in Figure 5.1f we can

see thatG2 inhibits the repeated execution ofα after the occurrence ofσ f . Hence, decentralized

diagnosability does not hold for the overall systemG.

Secondly, we illustrate the necessity that the abstractions of the subsystems are L-observers. There-

fore, consider the systemG consisting of the subsystemsG1 andG2 as shown in Figure 5.2. De-

centralized diagnosability works forG1 with respect toK1 andG2 is assumed to be trivially diag-

nosable. ForG1, the local set of shared events isΣ1,∩ = {α,γ} and gets extended tôΣ1 = {α,γ,ζ,σ f }

so thatp1 : Σ∗1→ Σ̂
∗
1 is an L-observer. ForG2, the abstraction alphabet is chosen asΣ̂2 = {α,γ} and

therewithp2 : Σ∗2→ Σ̂
∗
2 is notan L-observer. Hence,̂G, Ĥ1, H1 do not incorporateδ-transitions and

the overall systemG = G1 ‖ G2 is wrongly stated to be decentralized diagnosable. But from the

overall system behaviour (Figure 5.2g), one can see that the deadlocking δ-transitions inhibits the

detection ofσ f sinceγ cannot occur any more. Thus, the systemG is not diagnosable because the

abstraction ofG is not an L-observer.

Thirdly, the systemG depicted in Figure 5.3 shows the necessity of a loop-preserving abstraction.

Its subsystemsG1 andG2 have got the local specificationsK1 andK2. G1 is locally diagnosable

with respect toK1 and K2 can be chosen freely so thatG2 is locally diagnosable as well. The

abstraction alphabet ofG2 is chosen̂Σ2 = {β}, thusp2 : Σ∗2→ Σ̂
∗
2 is not a loop-preserving observer

(i. e., there exists a local loop inG2 which is not observed by the abstraction). The diagnosability

test procedure states that this system is diagnosable, even though from the overall system be-

haviour it is obvious that the system is not diagnosable because of the self-loop of γ at state 5

which is not incorporated in̂G2.

Fourthly, we illustrate the need of condition (b) in Proposition 5.1 which requires every cycle in

Ĝ to contain at least one event in̂Σ j . Figure 5.4 depicts a modular systemG consisting of two

subsystemsG1 andG2, whereG2 is assumed to be decentralized diagnosable (e. g., by is choosing

K2 = L(G2)). We now look at the test of decentralized diagnosability forG1: The abstraction

alphabets arêΣ1 = {ζ} andΣ̂2 = {β,ζ} such that the abstractions result toĜ1 andĜ2, wherep1 is

an L-observer andp2 is a loop-preserving observer.Ĝ andH1 result from Algorithm 5.1 andH1 is

generalized diagnosable with respect toK1. However,Ĝ contains aβ self-loop andβ < Σ̂1. From

the overall system behaviour (h) one can see that the cycle containingβ at states 7 and 8 inhibits

diagnosability after the occurrence ofσ f .
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5.2.4 Computational Complexity

With regards to the computational complexity the test for decentralized diagnosability requires the

computation ofH j which needs

• computation of observers for alli ∈ I (polynomial),

• parallel composition to obtain̂G (product state space of the abstractions, usually much

smaller than original automata),

• replacement byε-transitions (linear in number of transitions ofĜ),

• check if cycles inĜ without events in̂Σi exist (linear in number of transitions and states),

• parallel compositionG j ‖ Ĥ j (product state space of̂G andG j),

and diagnosability test forH j with respect toK j as proposed in [7] (see also Chapter 4) which is

polynomial as well.

5.3 Implementation in libFAUDES

The test for decentralized diagnosis of a modular plantG consisting ofm subplantsG j , j ∈ I, is

called by

bool I s D e c e n t r a l i z e d D i a g n o s a b l e (cons t vector<cGenerator>& G , cons t

vector<cGenerator>& K , cons t vector<EventSet>& Σ̂ , s t r i n g& r R e p o r t ) .

For every subsystemG j , j ∈ I, this function

1. creates the avector<cGenerator>Gi that contains all the other subsystems, and a

vector<EventSet>& Σ̂i containing all other abstraction alphabets.

2. invokes bool IsDecentralizedDiagnosable (const cGenerator& G j , const cGenerator& K j , const

vector<cGenerator>& Gi , const vector<EventSet>& Σ̂i , string& rReport). This function

(a) verifies a loop-preserving observer for everyGi ,

(b) evaluatesĜI j which is the parallel composition of the abstractions of allGi .

(c) composeŝΣI j as the union of all̂Σi

(d) calls bool IsDecentralizedDiagnosable (const cGenerator& G j , const cGenerator& K j , const

cGenerator& ĜI j
, const EventSet& Σ̂I j

, string& rReport). This function then

• findsΣ̂ j and computeŝG j , Ĝ, Ĥ j andH j as described in Algorithm 5.1,

• checks if every cycle in̂G contains at least one event inΣ̂ j ,
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• callsbool IsDiagnosable (const cGenerator& H j , const cGenerator& K j , string& rReport) to

check ifH j is diagnosable with respect toK j ,

and returns the diagnosability property as a boolean value.

If decentralized diagnosability holds for every subsystemG j with respect to its local specification

K j , then it also holds for the overall systemG with respect toK andtrue is returned; otherwise the

result isfalse.



CHAPTER 5. DECENTRALIZED DIAGNOSIS 49

1 2

3

α

γ

ζ σ f

G1

(a) The subsystemG1.

1 2α
ζ

C1

(b) The specificationC1.

1

2

3

4

α β

γ

δG2

(c) The subsystemG2.

1
2 3

α

γ

ζ σ f

Ĝ1
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Ĝ2
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(g) The overall systemG =G1 ‖G2.

Figure 5.2: Example illustrating necessity of L-observer condition.G1 andG2 are locally diagnos-

able, butĜ2 is not an L-observer ofG2. Thus, theδ-transition deadlocks in the overall systemG

and this violates diagnosability.
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(c) The subsystemG2.

1

βĜ1
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(g) G =G1 ‖G2.

Figure 5.3: Example illustrating necessity of abstractions that are loop-preserving observers.p2 is

not a loop-preserving observer and thus,Ĝ2 does not contain theγ-loop that violates diagnosability

in the overall systemG1 ‖G2.
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(h) The overall systemG.

Figure 5.4: Example illustrating the necessity of the condition that loops inĜ should contain an

Event fromΣ̂1. G2 is assumed to be decentralized diagnosable andH1 is generalized diagnosable

with respect toK1, but there exists aβ self-loop inĜ andβ < Σ̂1. From (h) one can see that the

cycle ofβ andγ at states 7 and 8 violates diagnosability.
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Chapter 6

Application of Decentralized Failure

Diagnosis to a Fischertechnik Model of

an Automated Manufacturing System

In this chapter we apply the approach of testing decentralized diagnosabilitythat has been devel-

oped in Chapter 5 to two subsystems of a Fischertechnik simulation model which isavailable at

theChair of Automatic Control. It represents a distributed manufacturing system consisting of a

stack feeder, conveyor belts, pushers, rotary tables, production cells and a rail transport system.

The Fischertechnik model processes workpieces that are symbolized bywooden blocks. The man-

ufacturing process starts from the stack feeder which delivers the blocks to the first conveyor belt.

Figure 6.1 shows a bird’s eye view of the Fischertechnik model and Figure6.2 focuses of the stack

feeder and the first part of the conveyor belt. The DES models of these two subsystems are taken

from [13] and will be used to perform a test for decentralized diagnosability.

The stack feeder (sf) consists of a stack holding the workpieces and a belt with a tiny block that

shoves one workpiece at a time onto the conveyor belt (cb1). The eventssfmv (stack feeder move)

andsfstp (stack feeder stop) trigger the motion of the stack feeder belt. A photoelectric barrier

detects the presence of a workpiece: At the arrival of a workpiece,sfwpar (workpiece arrives)

occurs and when it leaves the sensor triggerssfwplv (workpiece leaves). The block has got a

defined rest position which is detected by a magnetic sensor that triggerssfr (rest position) and

stnr (not in rest position). A possible failure that can occur within the stack feeder is that a

workpiece jams. Suppose that aftersfmv, due to some irregularity, the workpiece lifts a bit at its

front site. Then it can hit the lateral cross beam of the stack feeder andblock the movement of the

stack feeder belt. We call this failuref_wpjm (workpiece jams). Thecontrolledbehaviour of the

stack feeder including possible occurrences of the failuref_wpjm is shown as automatonGsf in

Figure 6.3. The eventsf-cb1 is a shared event between the stack feeder sf and the conveyor belt
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Figure 6.1: The Fischertechnik model of a manufacturing system.

cb1. Whenever it can be executed it indicates that interaction of the stack feeder with the conveyor

belt is possible, i. e., a workpiece can be delivered to cb1. To recognizethe failure after the jam

of the workpiece, a timer with an appropriate threshold is introduced. It starts running and resets,

respectively after each occurrence ofsfnr. If the timer overflows beforesfwplv occurs the event

t_sf is issued.

The conveyor belt cb1 transports workpieces by moving in the negative x-direction. The movement

is triggered bycb1-x and stopped bycb1stp. The arrival of the workpiece on the conveyor belt

is detected by a capacitive sensor in the pusher and is indicated bycb1awpar (workpiece arrives).

For this example we simplified the behaviour of cb1. The simplified modelGcb of the controlled

behaviour of the conveyor belt is shown in Figure 6.4. It includes a failure f_wpfd which simply

consists of the workpiece dropping from the conveyor belt (workpiecefalls down). Additionally,

we introduce a second timer that resets every timecb1-x occurs. If the overflow occurs before

cb1awpar, than the eventf_wpfd is triggered.

Gsf andGcb, with their alphabetsΣsf andΣcb are now considered as two modules of an overall

systemG. The nominal behaviour of the two subsystems is given by the specificationsKsf and

Kcb that are modelled as specification automataCsf andCcb (see Figure 6.5 and 6.6), whereKcb=

L(Ccb) andKsf = L(Csf).

We now want to verify decentralized diagnosability of the overall systemG = Gsf ‖ Gcb with

respect to the specificationK = Ksf ‖ Kcb. Therefore, we have to define abstraction alpha-



CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 54

Conveyor Belt

Stack Feeder

Pusher

Figure 6.2: Stack feeder and conveyor belt with pusher of the Fischertechnik model.
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sfwpar

sf3
sf-cb1

sf4
sfmv

sf5

sfnr

sf10
f_wpjm

sf6

sfwplv

sf11

f_wpjm

sf7

sfr

sf8sfwpar

sfstp

sf9

sfwpar

sfr

sfstp

sfnr sf12
t_sf

Gsf

Figure 6.3: The stack feeder modelGsf including the unobservable failure eventf_wpjm.

bets Σ̂sf and Σ̂cb. Given the set of shared eventsΣ∩ = Σsf ∩ Σcb = sf-cb1 and i = {sf,cb},

we chooseΣ̂i such thatΣ̂i ⊇ Σ∩ are as small as possible but such that the natural projections

pi : Σ∗i → Σ̂
∗
i are loop-preserving observers for the local plantsGi . In this example it results that

Σ̂sf = {sf-cb1,sfwplv,f_wpjm} andΣ̂cb= {sf-cb1,cb1awpar,f_wpfd}.

To perform the actual test of diagnosability, the subsystem and specification automata, as well as

the abstraction alphabets are stored inSTL vectorsand the function

bool I s D e c e n t r a l i z e d D i a g n o s a b l e (cons t vector<cGenerator>& G , cons t

vector<cGenerator>& C , cons t vector<EventSet>& Σ̂ , s t r i n g& r R e p o r t )

is called with an additionalstring variable that provides human readable information in case of a

negative test result.

As explained in Chapter 5.3, a decentralized diagnosability test is made for every subsystem.
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f_wpfd
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Figure 6.4: Conveyor belt modelGcb including the unobservable failure eventf_wpfd.
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sf8sfwpar

sfstp

sf9

sfwpar
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sfstp

Csf

Figure 6.5: The specification automatonCsf for the stack feeder.

First, decentralized diagnosability ofGsf is examined bybool IsDecentralizedDiagnosable (const

cGenerator& Gsf, const cGenerator& Ksf, const cGenerator& Gcb, const EventSet& Σ̂cb, string& rReport)

according to the following steps:

1. The abstraction alphabetΣ̂sf is computed such thatpsf : Σ∗sf → Σ̂
∗
sf is an L-observer. Here,

Σ̂sf = {sf-cb1,sfwplv,f_wpjm}. Figure 6.7 shows the abstraction automatonĜsf.

2. The abstraction̂Gcb is created by performing the loop-preserving projection ofGcb on the

abstraction alphabetΣ̂cb (see Figure 6.8).

3. Ĝ1 = Ĝsf ‖ Ĝcb is the joint behaviour of the abstractions of the subsystems and is depicted in

Figure 6.9.

4. Ĥsf is the local view ofĜ1 from the local siteGsf. It is created by replacing all transitions in

Ĝ1 with events that are not in̂Σsf byε-transitions (see Figure 6.10). Note thatε-transitions do

not exist in libFAUDES. We usevoid cProjectNonDet (cGenerator& Ĝ1,const EventSet& Σ̂sf) that

replacesε-transitions by inserting additional transitions and further initial states if necessary.

5. Hsf =Gsf ‖ Ĥsf is computed. This parallel composition incorporates the high-level behaviour

of Gcb in Hsf (see Figure 6.11).

cb1

cb2sf-cb1 cb3
cb1-x

cb4

cb1awpar

cb1stp

Ccb

Figure 6.6: The specification automatonCcb for the conveyor belt.
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6. The function determines thatHsf is generalized diagnosable with respect toKsf and addition-

ally verifies that every cycle in̂G1 contains at least one event inΣ̂sf. From Proposition 5.1 it

follows, thatGsf is decentralized diagnosable with respect toKsf.

To illustrate the testing according to Proposition 5.1, examineHsf andG1: Firstly, from the model

of Hsf, generalized diagnosability with respect toKsf can be recognised. All faulty traces contain-

ing the failure eventf_wpjm (cp. the faulty states within {8,9,10,19,20,21,28,29,30}) do deadlock

with the occurrence oft_sf in any of the states {10,21,30}. Sincet_sf only occurs in the faulty

traces, the violation ofKsf can be determined unambiguously. Secondly, looking atĜ1 we identify

two cycles at states {1,2,3} and {1,2,5}, respectively. Both of them containthe eventssf-cb1 and

sfwplv which belong toΣ̂sf.

1 2
sf-cb1

sfwplv
3

f_wpjm

Ĝsf

Figure 6.7: The abstraction automatonĜsf.

1 2
sf-cb1

cb1awpar
3

f_wpfd

Ĝcb

Figure 6.8: The loop-preserving abstraction automatonĜcb.
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sfwplv
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Ĝ1

Figure 6.9:Ĝ1 represents the joint behaviour of the abstractionsĜsf andĜcb.
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Figure 6.10:Ĥsf is the local view ofĜ1 from Gsf.
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Figure 6.11:Hsf is the behaviour ofGsf incorporationg the high-level behaviour ofGcb.



CHAPTER 6. APPLICATION OF DECENTRALIZED FAILURE DIAGNOSIS 59

Next, decentralized diagnosability of the second subsystem, namelyGcb is checked analogously.

The testing automata are shown in Figures 6.12 to 6.15. Again,Hcb turns out to be generalized

diagnosable with respect toKcb, as similarly to before, every faulty trace unambiguously ends with

the occurrence oft_cb that leads into any of the deadlocking states in {8,14,19}. Additionally,

any of the cycles occurring at states {1,2,3} and {1,2,5} inĜ2 contains at least one event inΣ̂cb. It

follows from Proposition 5.1 thatGcb is decentralized diagnosable with respect toKcb.

All in all, both subsystemsGsf andGcb are individually decentralized diagnosable. Thus, it follows

from Theorem 5.1 that the overall systemG =Gsf ‖Gcb is decentralized diagnosable with respect

to the specificationK = Ksf ‖ Kcb.

1 2
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cb1awpar
3

f_wpfd

Ĝcb

Figure 6.12: The abstraction automatonĜcb.
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Ĝsf

Figure 6.13: The loop-preserving abstraction automatonĜsf.
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Figure 6.14:Ĝ2 represents the joint behaviour of the abstractionsĜsf andĜcb.
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Figure 6.15:Ĥcb is the local view ofĜ2 from Gcb.
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Figure 6.16:Hcb is the behaviour ofGcb incorporationg the high-level behaviour ofGsf.
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sf states cb states sf‖cb states

Gsf 12 Gcb 7 G 84

Csf 9 Ccb 4 C 36

Hsf 36 Hcb 21 – –

G̃sf 36 G̃cb 21 G̃ 84

Table 6.1: The table lists the relevant automata and the cardinality of their state sets to compare

the test for decentralized diagnosability with the test for language diagnosability.

To end with, we compare the test of decentralized diagnosability ofGsf andGcb with the test of

diagnosability for the overall systemG =Gsf ‖Gcb with respect toK = L(C) with C =Csf ‖Ccb.

For the test of decentralized diagnosability, the automataĜi , Ĝ, Ĥi , andHi have to be generated

for every subsystem and thenHi is tested for diagnosability with respect toKi .

In contrast, for the centralized test,G andC are computed as parallel compositions and thenG

is tested for diagnosability againstK. For an impression of the systemG and the specification

automatonC, Figure 6.17 shows̃G which has got the same transition structure asG (but marks

its faulty language) and Figure 6.18 depictsC. Table 6.1 compares the sizes of the automata by

listing the state numbers of the automata in the decentralized diagnosis test compared to those of

the centralized diagnosability test.

Summarized, the difference in size of the automata in the decentralized test to those of the central-

ized test is evident: While the largest automaton for the centralized test has 84states, the largest

automaton for the decentralized test has only 36 states. Since complexity reduction is already ob-

served in this example, we expect it to be even more visible in the case of large-scale systems with

various subsystems.
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Figure 6.17:G̃ marks the faulty language of the overall systemG=Gsf ‖Gcb.
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Figure 6.18:C =Csf ‖Ccb is the overall specification automaton.
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Chapter 7

Conclusion

Failure diagnosis has become a crucial task within the research of discreteevents systems (DES)

since the middle of the1990s. With systems growing in size and complexity it becomes important

to find efficient procedures and algorithms for the on-line diagnosis and the validationof diagnos-

ability itself. In this thesis we focused on the latter.

After introducing the relevant basics of DES, we presented the notions ofdiagnosability and I-

diagnosability, and the diagnoser according to Sampathet al. [12]. A method for testing diagnos-

ability with polynomial complexity was given according to Jianget al. [5] and we additionally

developed a polynomial-time test for verifying the I-diagnosability property of a system.

In accordance with the notion of codiagnosability of Qiu and Kumar [8] we introduced diag-

nosability with respect to specification languages and developed a test forthe validation of this

so-called language diagnosability which is polynomial in complexity.

In Chapter 5, we presented a polynomial-time abstraction-based approachfor decentralized di-

agnosis of a modular system with local specifications which does not require the construction

of the complete plant model and specification. To determine decentralized diagnosability for a

subsystem, the local view of the abstractions joint behaviour is determined asa nondeterministic

automaton. From there a model of the subsystem that incorporates an abstraction of the other sub-

systems’ behaviour is computed. This newly obtained model is then used to perform a generalized

diagnosability test with respect to the local specification. The notion of decentralized diagnosabil-

ity for an individual subsystem was extended to the overall system and thepracticability of the

required conditions was illustrated.

The structure of the diagnoser, the diagnosability tests with respect to failure events, the diagnos-

ability test with respect to a specification, and the procedure of decentralized diagnosability testing

have been implemented as a plug-in for the C++ software library libFAUDES.
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Finally, we validated the functionality of the newly introduced approach and the algorithmic im-

plementation by performing a decentralized diagnosis test for two interacting subsystems of a

Fischertechnik model of a manufacturing system.

In future work, further tasks in the scope of failure diagnosis could be the implementation of on-

line diagnostics in the libFAUDES library, creating an algorithm that extends high-level alphabets

such that projections on these alphabet become loop-preserving or adapting the failure models of

a system such that it becomes decentralized diagnosable. Moreover, decentralized diagnosability

testing could be studied for modular systems with a global specification that is defined as part of

the high-level language of the system.
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