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Aufgabenstellung:

Recently, efficient methods for the supervisory control of multitasking discrete event systems
(MDES) have been developed. In contrast to the classical supervisory control theory by
Ramadge/Wonham, MDES are modeled by colored marking generators, that is, automata
where states can have multiple colors that represent distinct tasks. The main goal of the
controller design is then to find supervisors that are nonblocking with respect to each
individual color.

In this thesis, the advantages of multitasking supervisory control shall be investigated. In the
first step, algorithmic support for the synthesis of multitasking supervisors has to be provided.
To this end, the C++-software library libFAUDES which has been developed at the Chair
of Automatic Control of the University of Erlangen-Nuremberg shall be used. The original
library supports the analysis of discrete event systems (DES) and the synthesis of supervisors
for DES according to the supervisory control theory by Ramadge/Wonham. In this work, a
plugin for multitasking supervisory control has to be implemented. Second, a study of two
example systems has to be carried out. The cat-and-mouse-in-a-maze example shall be
extended to two connected floors, and modular multitasking supervisory control has to be
applied to solve control problems that involve multiple tasks for the cat and the mouse.
Finally, hierarchical multitasking supervisory control shall be applied to the model of a
manufacturing system with several components, and the benefit of using multiple colors has

to be discussed.
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Chapter 1
Introduction

Various technical systems such as communication netwanksufacturing systems or
decentralized sensor-actuator-systems can be modeldidaste event systems (DES)
For this reason, the modeling of DES and the investigatidheif behavior has attracted
a lot of interest during the last two decades. New methodemiral and verify discrete
event systems have been developed.

The initial effort has been made by P.J. Ramadge and W.M. AfmrRW87], who pub-
lished their work on a “Supervisory Control Theory” in thedd980s. They introduced
minimal restrictive supervisors which may constrain a pf&mehavior by disabling con-
trollable events in order to comply with a given specificatin this context, the speci-
fication both expresses the sequences of events that aneedlend marks certain tasks
that have to be achieved in the controlled behavior.

The computation of minimally restrictive supervisors frargiven plant model and a
specification can be carried out by computational tools siscthe software library lib-
FAUDES which is developed by the Discrete Event Systemsuafithe Chair of Au-
tomatic Control at the University of Erlangen-Nurnbergisita universally applicable
program library for DES written in C++ and its sources areliyeavailable [lib08] under
the terms of the GNU Lesser General Public License [Igp07].

Considering the standard supervisory control theorygthee two main difficulties which
have to be overcome.

First, the number of system states increases enormoudydtegms that consist of a grow-
ing number of components. This phenomenon is also knowntate“space explosion”
[RW8T]. It results in a very high complexity of the regardeddels, such that comput-
ing those models leads to an enormous memory consumptiarsegaently, only small
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Figure 1.1: Model, specification and supervisor for a singhdwator

models can be examined, which is in contradiction to therddsr a practical application.

This problem can be diminished by using hierarchical absta. Models and specifi-
cations are divided into several little parts, which are borad step by step to an entire
model. In doing so, several levels of abstraction are obthikvents that are not impor-
tant to the next higher level can there be omitted. As a rehidthighest level automaton’s
size is significantly smaller than the one of a monolithioaton [Sch05].

Second, there often are systems that require the comptetgmveral distinct tasks. In the
classical approach, the marking of all states that reptésercompletion of a task would
imply, that all tasks have to be completed in one state andeatame time. From the
practical point of view, this constitutes an unnecessasyricion of the DES modeling
formalism as demonstrated in the following example.

A simple elevator only runs between two floo@& ¢ elevatorin Figure 1.1). There are four
states describing the elevator being on floor one or two, arimgoup or down, and four
eventshmove_up, nmove_down, andup anddown which describe the arrival of the elevator
at the respective floor. In the initial state, the elevatoonsthe lower floor. In another



model Gy¢, doors W€ consider the operation of the doors of the elevator whanh be
modeled by two states, one for doors open and the initial onédors closed. The events
consequently arepen_door s andcl ose_doors.

The specificatiorRyc elevator forbids the movement of the elevator when the doors are
open. Furthermore, it guarantees that the doors do not optarebthe elevator has
stopped.

As the supervisor should guarantee that the doors can bedperevery floor, we choose
state 2 symbolizing open doors as marked stat&jfldoors: We also want the elevator
to move upwards and downwards. For this reason the corrdspgpstates 2 and 4 of
Guyc, elevator are marked, too. As can be seen, these markings do not gef aitim our
specificationR,c elevator and cause a conflict between states 2 and & @fejevator and
state 2 ofGyc doors The resulting supervisdc elevator €ither enables the movement of
the elevator what implies that the doors have to be closed,adlows the doors to be
opened which requires that the elevator has arrived at om®tbf floors and does not
move until the doors are closed again. Hence, simultaneompletion of both tasks is
not possible.

To solve this problem, simple markings have been replaceddbyred markings in
[dQCO04], [dQCO05]. So, the completion of several tasks cambeked by several types
of markings, namely colors (Figure 1.2). A Colored Markingp8rvisor as is introduced
then assures that all tasks can be completed independéetigio other. In accordance to
our example, this means opening the doors and movement efdhator do not have to
happen at the same time, but can occur alternately, whatessour conflict.

However, introducing colored markings does not solve thablem of state space ex-
plosion. To this end, K. Schmidt, M. H. Queiroz and J. E. R.yCeombined the idea
of hierarchical control and colored marking and showed ffieiency of the combined

approach [SQCO7].

In this thesis, it is explained how we integrated a multitaghplugin into the libFAUDES
software library. It offers the necessary methods for angaCMGs and for operating
on them, for instance for inserting colors into states, fatesminimization, the parallel
composition or the strongly trim operations. Functionstfe supervisor synthesis and
abstraction also are available. Together, the examinafibrerarchical multitasking DES
and the synthesis of multitasking supervisors is enabled.

First, Chapter 2 describes basic facts concerning langagmerators and their prop-
erties. Furthermore, an introduction to CMGs and hieraadhdesign methods is given.
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Figure 1.2: Model, specification and supervisor with caliostates for a simple elevator

Chapter 3 offers detailed information about the libFAUDESItitasking plugin, espe-
cially about the data structure for saving color labels dnedatdaption of the required and
already mentioned functions.

To conclude, two examples shall illustrate the effectigsnef hierarchical multitasking
control of DES in Chapter 4. The first one is an adaption of titeacd mouse in a maze
example introduced by Ramadge and Wonham [RW87], the seaoadealizes a part
of a manufacturing system model K. Schmidt described in tgsedtation [Sch05] and
which is available at the Chair of Automatic Control.



Chapter 2
Definitions

At first, a short introduction to the topic of DES shall be givend basic definitions
are presented. For further information and proofs, inteceseaders are advised to con-
sult appropriate literature, e.g. [CL99] for general aspet DES or [dQC04] regarding
multitasking systems. Details about hierarchical and aeakzed multitasking control,
especially, can be found in [SQCO07].

For illustrating some of the following definitions, a gerteraexample as depicted in
Figure 2.1 is introduced.

Gex
{c1, c2} iy

o 1
N

Figure 2.1: AutomatoGe for illustration of following definitions

In our automaton graphs, colored markings result in theroaioof the state node, if a
state only contains one color label. In case of several edlonarkings, it is framed by
rectangles in the appropriate colors. Besides, the raspaxilor names are printed next
to the corresponding states in curly brackets.
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2.1 Formal Languages and Automata

LetZ be an event sea(phabej. The set containing the empty strin@nd all finite strings
of elements ok is denoted as thkleene-Closur&*. A language. is a subset oE* and
it is prefix closedf L = L with

L:={seX:Jte" st (stelL)}

being theprefix-closure
In this casel contains all strings it and their prefixes, whereas in genetat; L.

A Colored Marking Generator (CMG¥ defined as a 6-tuple

G: (Q, Z, C7 67 X7 qo)’

whereQ is a set of stateg, a set of events; a set of colorsd : Q x ~ — Pwr(Q) (power
set ofQ) denotes the transition functiog, Q — Pwr(C) describes the marking function,
andqp is the initial state.

I : Q— Pwr(Z) is calledeligible event functioor active event functiosuch thaf (q) is
the set of events that are feasiblegig Q.

For exemplifying this definition, we refer to the automat®g, from Figure 2.1, which
establishes the sets
Q={1,2 34,5 6, 7},
> = {el, €2, €3, e4, €5, €6},
C={cy, ¢},
5(1, el) =2, 5(2, €3) =6, (1, €2) =5, ...,
X{1} = {c, c2}, X(3) = {c1}, X(6) = {cz},
o= {1}, and
r{1} ={el, €2}, I'(2) ={e3, e4}, I'(5) ={ed}, ...

A CMG is termedinite automatornwhen its set of states is finite. Furthermore, it is called
deterministidf it only contains one initial statgg and if in every state there are no active
eventsy appearing multiple times and leading to separate succetses. Otherwise, it
is nondeterministic.

Thelanguage generated by the generatoisGlesignated as

L(G) := {s€ Z*| f(qo, S) is defined.
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As for multiple classes of tasks in one CMG different coldrdisc € C are used for
markings, the languages

Le(G) = {se L(G) | ce x(es(qo<s)))} € Pwr(z*), Ve e C
mark the completion of a task of a respective class or acoto€. Consequently,
Nc = {(Lc|c), ceC} C Pwr(Pwr(z*) xC)

defines acolored behaviayi.e., the set of pairs of colored languages with their retpe
color.

For a nonempty set of coloBwith 0 ¢ B C C thelanguage marked by B defined as

Le(G) := {se€ L(G) | BNx(3(qo, 5)) # 0},
what means that any generated striig a prefix of any completed task marked with a
colorb € B.

For our example automatdBey depicted in Figure 2.1, the language generatedsgy
results as

L(Gex) = {€l, eled, ele3e5, ele3eSed, ele3ebedel, ...,
€2, e2e4, e2ede5, e2edebed, .. |,

its colored behavior as
Ac(Gex) = { ({ele4, eleseses, e2eebed, eledebedeled, ...}, ci),

({ele3, e2ed, ele3e5ed, e2ede5ed, ...}, Cp) }

2.2 Natural Projection

There are two event seks and 2, which naturally are subsets &f UZ5. Then, the
natural projection P: (X1UZ5)* — X fori =1, 2 erases events in a string formed from
the larger event s@t; U 2, that do not belong to the smaller ordg (or Zo).

It is defined as follows:

R(e):=¢
R(e):

e ifee?zj
e ifedgz.
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Strings can be viewed as the concatenation of single eleseh that
R(se) :=R(s) R(e)

for the prefixs € (£1UZ,)* and an eveng € (21 UZXp).

The projection for the languad€ G) can be obtained by applying it to all strings in the
language.

With the natural projectionpg : =* — %j the colored natural projectionmy :
Pwr(Pwr(%Z*) x C) — Pwr(Pwr(Z{) x C) for CMGs is defined such that

Lc(Mo(Ac)) = po(Le(Ac)), VeeC.

The projected colored behavior can again be realized by a @g¢Guch that for each
¢ € C, Ac(Go) = mo(Ac(G)).

Gproj

Figure 2.2: Gproj as the projection’s result forGex and the alphabetsz; =
{el, e2, ed, 5, e6}

The colored natural projection applied on the automdigpfrom Figure 2.1 with the
alphabe; = {el, e2, e4, €5, €6}, wheree3 is missing, consequently results in the au-
tomatonGproj shown in Figure 2.2.

The result for the language generateddyoj
L(Gproj) = {el, eled, eleb, elebed, elebedel, ...
€2, e2ed, e2edeb, e2edeSed, ... |
and the colored behavior f@pyo
Nc(Gproj) = { ({eled, elebed, e2edebed, eleSedeled, ..., c1),
({el, e2e4, elebed, e2edebed, ...}, Co) }
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differ from L(Gex) andAc(Gey) in that way, that in the respective strings contained in
L(Gproj) andAc(Gproj) the evene3 is erased.

The inverse projectioﬁ’l‘1 : 27 — Pwr((Z1U2>)*) extends a smaller event set by all
eventse € 31 U2, with e € 2, — Z1. In an automaton representation, the inserted events
appear in all states as self-loops (see Figure 2.3).

C':‘invproj {C C} e3
1, L2
el
e3 < {c1}
1
1 © eb el
{CZ}ell \ .
3
a {c2}

Figure 2.3: Inverse projection applied on the automaigp j, where evene3 was miss-
ing, with the original alphabei; containinge3

2.3 Accessibility and Coaccessibility

Accessibility describes an automaton’s property thatsakiates can be reached by start-
ing in an initial state and following the transition relatidSo, state) € Q is accessiblef
there exists ais € * such tha®(qo,s) = . G is called accessible i is accessible for
everyq € Q.

A stateq € Q of a CMG isweakly coaccessible w.r.t. its color setfGtarting atq at least
one state that marks one or more color€afan be reached with an existing sequence of
transitions. This means, there exists@C and as € >* such that € x(8(q,s)).

g € Qisstrongly coaccessible w.r.t.i€starting at statg there is a sequence of transitions
for everyc € C that leads to a state marked &y

VceC,3dse X" s.t.ce X(8(q,9)).
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A CMG is weakly trim if it is accessible and weakly coaccessible wa.tlt is called
strongly trim if it is accessible and strongly coaccessible.

Gacc Gstreoac {Cl, CZ}

{CZ} e3

e2

e2

Figure 2.4: The accessible form of the automa@yproj from Figure 2.3 is shown on
the left side, its also strongly coaccessible version omitit.

The automatoGinyproj from Figure 2.3 is already weakly coaccessible w.r.t. tHercget

C = {c1, ¢z}, as from any state at least one colored state can be reacbeever, it is
not accessible and not yet strongly coaccessible. Whelyiagghe accessible operation
on the automaton, it looses stat€Figure 2.4). To even make it strongly coaccessible,
state3 has to be erased, as from there no state colored bgn be reached.

2.4 Blocking

A CMG G isweakly nonblocking w.r.t. @

L(G) = Lc(G).

So, any generated string can complete a task marked withoa cal C. An equivalent
statement is that the accessible parGdé weakly coaccessible.

G isstrongly nonblocking w.r.t. @
VceC, L(G) = L¢(G),

which says that any string can be completed to all tasks Matgnitly, the accessible part
of G has to be strongly coaccessible.
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Using those definitions, we examine the blocking behavioGgf from Figure 2.1 by
regarding the appropriate languages. The language geddraGey is

L(Gex) = {€l, €2, ele3, eled, e2ed, ele3e5, ...},
whereas the prefix closures of the colored marked languaget to

L, (Gex) = {ele4, ele3ebed, e2edebed, e2e3ebedelel, ...} and
Lc,(Gex) = {€1€3, e2e4, ele3e5ed, e2edebed, ... }.
As L¢, does not contain the prefigle4 which is contained irL(Gey), the automaton

cannot be strongly nonblocking@e,, however, is identical t&.(Gex). Therefore, at least
weakly nonblocking is given.

2.5 Colored Parallel Composition

The parallel composition of two colored behavidig andNc, with Mg C N¢ if BC C
andvb € B, Lp(Mg) C Lp(Nc), is defined as

Mg | Mc = {Lp(Mg) || Lo(Nc), b, ¥b € BAC} U
{(Lb(Mg) [| Lc(Nc), b), voe B—C} U
{(LB(MB) || Lb<NC)7 b)7 VbEC_B}

with a resulting color seBUC.

For exemplification, those colored behaviors can be reptedeas two automata with col-
ored markings. With the definition above, their composittan be explained as follows.

A colored label existing in the current states of both autianta combine leads to the

composition’s resulting state also possessing this |&ethe other hand, colors appear-
ing in both automata, but only in one of the compared statesiat considered in the

respective composition state. However, if a state’s catoone of the single automata
does not appear in the other one at all, then it is adoptecetcethult.

Therefore, the parallel composition for two CMGs = (Qq, 1, Cy, 81, X1, Jo,1) and
G2 = (Q2, Z2, Cp, 82, X2, Uo2) is defined as

G1 || G2 :=Ac(Q1 x Qz, Z1U %2, C1UCy, 8, X, (do, To,2)), With
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[ (31(a1,0), (. 0)),if 6 € 1) NT2(0p)
(31(a1,0), 02), if 0 € M1(01)\Z2
(A1, 82(02,0)), if 0 € M2(d2)\Z1
undefined otherwise,
X((a,62)) = [Xa(qe) U(C2 —Ca)] N[X2(d2) U (C1—C2)],

M ((ge,02)) = [M1(r) U(Z2—Z1)|N[M2(02) U (21— 22)],
andAc being the accessible operation which deletes unreachtiés $rom a generator.

6(((]1, q2>7 0) =

In generalL(Gy || G2) = L(G1) || L(Gp). Furthermore, ifCy = Cp or if G and Gy are
weakly coaccessible w.r.t. their respective color setstehation\c (G || G2) = Ac(Ga) ||
Nc(Gy) is valid as well.

2.6 Multitasking Supervisory Control

An open loop behavior of a DES, which is modeled by a CMG, haketa@ontrolled
by a supervisor such that a safety specificatdgn theadmissible languagas fulfilled.
Moreover, strongly nonblocking of the controlled system twbe guaranteed.

A coloring supervisor SL(G) — Pwr(X) x Pwr(E) wherePwr(%) represents the set of
enabled events arfelwr(E) a set of new colors which indicate the completion of a task is
admissiblef Vse L(G), Z,NT(d(qo, S)) € R (Y(9)).

Here,Z, contains all uncontrollable events ard S(s)) identifies the events the supervi-
sor does not prevent after occurrence of the string s. Thalsyays enables all uncontrol-
lable events of the active event set.

An admissible coloring supervisor, which is strongly nadiing w.r.t. D such that

NAp(S/G) = Ap andL(S/G) = Lp(Ap), exists if the following conditions are fulfilled:

e controllability: Lp(Ap)ZyNL(G) C (Lp(Ap))

e D-closureiLyq(Ap) = Lq(Ap) NLy(G), Vd € (DNC)
e strong nonblocking oAp w.r.t. D
Controllability means that any uncontrollable event odagr after an allowed string that

is feasible in the automaton’s current state always has febaitted by the supervisor,
as disabling it is impossible anyway.
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In case that controllability and strongly nonblocking ace fulfilled, the supremal con-
trollable and strongly nonblocking superviSBSENBAp, G, D) can be computed with
complexity polynomial in the number of states of the mod€@04].

2.7 Multitasking Hierarchical and Decentralized Control

System models can often be composed by separate contrdd&d=pwith a respective
color setC; which are represented by finite automata. The overall systedel results as

n
G :=||lL; Gi with color setC := | JC;
i—1

Zi y andZj ¢ denote the uncontrollable and controllable events of tisstemG;. The

events shared in different components are designated asd have to agree on their
control status, what means that for two subsyst&rend Gy with i # k

ZiyumZKC — 0

If this condition is fulfilled,Z, andZ. of the overall system result as

n
2y = U 2iu
i=1
n
Se=JZe
i=1

Before composing subsystems, they mostly can be reducedn@ber number of states
by natural projection. In this step, events of a compor&rbeing not essential for the
high-level are erased from the low-level alphabet. Thicpdure calledhierarchical ab-
stractionis based on the idea that the low-level supervisor takes alaal low-level
events. All other ones - especially all shared events - anéagted in the high-level al-
phabetyj, such thabsNZ C 2p; C ;.

As follows, colored marking high-level plan@  for the respective subsystei@sresult
as

L(Goi) =  pi(L(G))
Nc(Goj) = moi(Ac(Gi))

with the natural projectiom; : 2 — X3; and the colored projectiomg : X — Xj;.
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Then, the overall high-level plant evaluates to the CRagwith

L(Go) = po(lliL1L(Gi)) = [iL1L(Go,)
Nc(Go) = mo(|[iLy Ac(Gi)) = [IiL1Ac(Gio),

with the controllability properties taken over from the kbevel.

The specification needed for computing a high-level sugenis given as a colored be-
havior Ap with its color setD. Based on it, a supremal controllable and strongly non-
blocking superviso&, : L(Gg) — Pwr(Zg) x Pwr(E) with a set of new colorE =D —-C

can then be computed.

The control action for the low-level supervissr L(G) — Pwr(Z) x Pwr(E) is defined
for eachse L(G) as

S(s) == (So(Po(9) U (Z— Z0), 1 (So(Po(9))) )

with 1 (So(po(s))) representing the high-level supervisor’s colors.

Thus, the low-level supervisor compasses an alphabet Wiglvents from the high-level
supervisor and, additionally, the low-level events that@ot of interest to the high level
and, therefore, are not in the abstraction alphabet. Tleesaked at the high level are the
same as in the subsystems. They cannot be neglected, asahéy@ tasks to complete.

The control action each subsystem can observe after a steiaug be described as
(R (S(s))NZi, 1(S(s)) N(GUE)).

Following the mentioned steps, hierarchical consisteacyle guaranteed and the super-
visor implementation is carried out such thg{L(S/G)) = L(S/Co).

To ensure a nonblocking behavior of the supervised systeenolbserver condition for
CMGs is required.

Definition 2.7.1 (Colored Observer)Let L = L C 5* be a language, Ac €
Pwr(Pwr(Z*) x C) with Lc(Ac) € L a colored behavior, and define the natural
projection @ : Z* — %5 and the colored natural projectiongn Pwr(Pwr(Z* X C)) —
Pwr(Pwr(Z x C)) for Zg C Z. Then, ng is a Ac-observer (w.r.t. L) iff for each € C, it
holds thatvs € L andVt € = with po(S)t € po(Lc(Ac))

Ju e ¥ s.t. sue Le(Ac) A po(Su) = po(S)t.
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Strongly nonblocking control can be achieved forcadl C for Lc(S/G) = L(S/G) if my;
is aAc(Gj)-observer foi = 1,...,n.

To demonstrate the meaning of this definition, we chose th@fomg automaton, which
is deduced from the workpiece detection element present&hapter 4.2.2. It shall be
examined if the observer condition holds for two differenbjpction alphabetsy; =
{a,c,d, flandz,={a, c d, e f}.

Gobs

Figure 2.5: Automaton for illustrating the observer cormufit

>1={a, d, e f}: Letp; be the natural projection for the alphalagt We examine the
observer condition fos = abcandt = d. As p1(Gops) = {ad, ae adfad ...} and
consequentlyps(abc)d = ad € p1(Gops), S andt are valid values for testing the
colored observer condition. With striredoc we arrive at statd. However, there is
no stringu such thatbcue Lc,(Ggps) and po(u) =t. So, it is shown for the color
c2 and the alphabef; thatms, 5, , is not a/\c(Ggps)-observer.

>>={a,cd,e f}: Weregardthe same strimfor the natural projectiom, with the
alphabet,. Other than in the previous case, the projection step nowetslthe
languagep2(Gops) = {ad, ace adfad ...}. To attain the same critical case than
above, we again chooge= d. Doing so, p2(s)t = p2(abc)d = acd & pz2(Ggps)-
Hence, this case does not affect the observer condition.

For all other stringsand all othet € Z, the compliance with the observer condition
can easily be verified.

Definition 2.7.2 (Nonblocking Control) If mg; is a Ac(G;j)-observer (w.r.t. (Gj)) for
i=1,...,n,then

e Mo is a/\c(G)-observer (w.r.t. (G))
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e the closed loop is nonblocking¢(S/G) = L(S/G), Vc € C.

Note that the minimal generator fpp(L(G)) maximally has as many states as the mini-
mal generator fok(G) [SQCO07]. Moreover, the closed-loop on the high-level reprgs
a finite automaton for which further abstraction may be paesi
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Chapter 3

Multitasking Plugin for the lioFAUDES
Software Library

The libFAUDES software library developed at the Chair of édmatic Control at the
Friedrich-Alexander-University Erlangen-Nurnberg i®altfor handling finite automata
and regular languages. The most important feature in thersigory control context is
the possibility to compute minimally restrictive supenis from a given plant model and
an appropriate specification. The adequate algorithms atadstiructures for the classical
approach [RW89] of marked generators have already beereimgited. Also, algorithms
for designing hierarchical systems as in [Sch05] for geesawith a single color are
available.

The libFAUDES project is based on an object-oriented condeypeloped in the program-
ming language C++. Its sources are freely available undetdims of the GNU Lesser
General Puclic License on our homepage [lib08] and may beé fasewn projects or be
extended with own algorithms.

As was pointed out in the introduction of this thesis, theliapgion of the classical ap-
proach is not always satisfactory for the supervisor designultitasking systems. For
this reason, we developed a libFAUDES plugin for the comartal procedures for mul-
titasking systems. This plugin introduces colored markiag state attributes that are
used for functions such as the natural projection, the [gu@mposition or testing the
observer condition presented in the previous section.
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3.1 Plugin Description

The multitasking plugin consists of several files, which taim important functions
and necessary classes for the handling of multitaskingrgers. Thereby, the class
TmtcGenerators the most important one for the software user. It offershoes for

e constructing and destructing generators,
e inserting and manipulating states, colored markings, tsvemd transitions,
e naming and querying of data,

e input and output of generators or its single componentsjts.golor set.

Other functions, for instance the computation of the paralbmposition or a colored
supervisor and making a generator deterministic or adaessire added in own files and
do not belong to th& mtcGeneratoclass. Nevertheless, they belong to the plugin and are
designed for the use with multitasking generators in Se@id.

The classTmtcGeneratomherits fromvGenerator(Figure 3.1), which only contains vir-
tual classes for the generator interface definitions. Thivet classTaGeneratoimple-
ments almost all methods for setting up generators in tresidal approach. Controlla-
bility properties are realized in the claBsGeneratorAs our multitasking plugin inherits
from the TcGeneratorclass, many methods from the clas3esseneratorand TcGen-
erator can directly be used. Only methods which have to observeedlmarkings are
reimplemented imTmtcGeneratar

| faudes:vGenerator ‘

| faudes; TaGenerator< Globalattr, Stateattr, Eventattr, Transattr = ‘

| faudes:TcGenerator< Globalattr, Stateattr, Eventattr, Transattr = ‘

| faudes:TmtcGenerator< Globalattr, Stateattr, Eventattr, Transattr = ‘

Figure 3.1: Inheritance diagram for class TmtcGenerator

The TmtcGeneratoclass is, as well as its base classes, realized as a temiglssewhat
is indicated by the preceding template parameter T in itgtifler. Templates offer a
very efficient way of defining properties, as only requiredare linked to the program.
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Besides, the integration of templates is carried out dudagnpilation and modifying
them is possible with low complexity.

The compiler expects four class template parameters todsegdaThey are

¢ GlobalAttributefor the generator,
e StateAttributdor single states,
e EventAttributeor single events, and

e TransAttributefor single transitions.

With colored markings affecting the states, they consetiypeme represented as state
attributes, whereas the controllability properties ofrégare saved in the event attribute.
The global attributes or transition ones are not neededdolapproach. Thus, the void
attributeAttributeVoidis inserted for them. However, they are already considerddea
libFAUDES concept as a future implementation may requiesrth

The identifier of a classTmtcGenerator<AttributeVoid, AttributeColoredStatet- A
tributeCFlags,AttributeVoids abbreviated as mtcGenerator by an appropriate C++ type
declaration in our implementation. An example is given iotiéam 3.3.1.

3.2 Representation of Colors

The colors belonging to a particular state are saved in #esattributeColoredStatdt is
inserted for every state as its corresponding state atitriBtateAttr. The correlation with
other classes and the respective data members are shovendalldboration diagram in
Figure 3.2.

The clasttributeColoredStates derived fromAttributeFlagswvhich in turn inherits from
AttributeVoid As we do not use any methods or data members #dtmbuteFlags di-
rectly inheriting fromAttributeVoidwould also be possible, but for consistency with the
classAttributeCFlagswhich takes care of the controllability status of everttiribute-
Flagsis taken as base class. Its memivéflagsdoes not allocate any further cache mem-
ory, as its value is initialized to the static default vatnBefFlags= 0x0. For this reason,
the methodsDefaultwhich only tests ifmFlags = mDefFlagsis reimplemented irt-
tributeColoredStatand then allows to easily find out if a state is colored or not.tRat,
the method additionally determinesfColorsis empty.
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AttributeVoid
/N

AttributeFlags
+ mFlags
+ mDefFlags NameSet
#mpSymbolTable
AttributeColoredState +mColors
+ mColors - ColorSet #mpSymbolTable
+ mpColorSymbolTable -msSymbolTable
-msSymbolTable
+mpColorSymbolTable
Symbadl Table
-mMyName
-mindexMap \
-mNameMap

-mMaxindex
-mNextindex

-msEventSymbolTable

-msEventSymbolTable

Figure 3.2: Class diagram for collaborating classes ofiiiteColoredState

Each state’dttributeColoredStatelass has a color set mColors as data member, where
the color labels eventually are saved. It is derived fidameSetwhich is based on an
index setmindexSetThere, the color indices are insert€shlorSetitself contains a static
color symbol table, which means there is one color name sytabte for all color sets
belonging to this generator. The pointapSymbolTablen classNameSehas to be set

to this symbol table with every constructor call. Derefeiag it then is basis for saving
color names and for looking them up again.

Color names usually are saved in a global color symbol tatdéch means there is one
symbol table for all color sets in all generators. The menmiyg®ymbolTableontained in
ColorSetandmpColorSymbolTabligom classTmtcGeneratoare initialized to reference
this global color symbol table.

Furthermore, the current implementationTohtcGeneratoalso allows to set up a local
color symbol table for each generator. Doing so, we are ab&dse color names when
deleting a color label from a generator’s state. Using tbéajlcolor symbol table what is
the standard case, requires that color names are not eaasedannot be tested if there is
another generator using the respective color as well. Byrast) establishing a local color
symbol table resets the pointerpColorSymbolTablaccordingly, and consequently the
comparison of this pointer witmpSymbolTabl&om classColorSettells us if a global
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color symbol table or a local one is in use. In the latter cs=appropriate color name
can be deleted.

Although using a local color symbol table has slightly bessted, its faultless functional-
ity cannot be guaranteed. If this part of our plugin shall bed} it is in the programmers’
hands to ensure accuracy.

3.3 Class “mtcGenerator”

3.3.1 Interface Methods

Multitasking generators are established using their aldied identifiermtcGenerator
The automatorsey from Figure 2.1, for instance, can be generated using thewig
code sequence:

mtcGenerator gen;

stl = gen.InslnitState ();
st2 = gen.lInsState ();

1

2

3

4

5 st3 = gen.lInsState ();
6

7 eva = gen.InsEvent("a");

8 evb = gen.InsEvent("b");

9 evc = gen.InsEvent("c");

10

11 gen. SetTransition(stl, eva, st2);
12 gen. SetTransition(stl, evc, st3);
13 gen. SetTransition(st2, evb, stl);
14

15 gen.InsColor(stl, "init");

16

17 gen.Write ("example.gen");

18 gen.ColorDotWrite ("example.dot");

The first command establishes the genergtar As is already known from the standard
implementation, states, events and transitions are gtbentxt. The methothsColor
then assigns statg 1 the color labelnit. The output method#/rite andColorDotWrite
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then generate files with the specified names containing thergsr informationWrite
thereby creates a .gen file, which is the standard libFAUD&®ator file formatColor-
DotWritedelivers a file in the Graphviz [gra08] .dot file format. It da@used to directly
create a graphical output as an automaton.

In the following, some important methods provided by thasslare presented. A detailed
description is provided in the Doxygen [dox08] documeotati

e InsColoredStateand InsColor are used to insert colored states or to add colored
markings to existing states.

e DelColorerases a color from one or all stat€fStateColorgleletes all colors from
one state whereaSIrStateAttributesdeletes all colors from all stateBelStates
erases whole states including their attributes.

e Colorsreturns all the generator’s coloiStateColorghe ones of a respective state.

e ColoredStateslelivers a state set containing all labeled states or dtteted with
an appropriate color, respectively.

e The method<xistsColorand IsColoredcan be used to find out about the color
label status of a generator or a state.

e ColorNameallows to find out the color name to an ind&glorindexserves for the
reverse case.

e Accessiblewnhich is inherited from the base clagironglyCoaandStronglyTrim
are used to make generators reachable and strongly cobdadisaccessiblels-
StronglyCoacandlsStronglyTrimare used for testing those properties.

3.3.2 Implementation Details

Saving and Querying of Color Labels

The internal way of saving colors for a certain state or mgstor its existence is always
the same and shall be explained taking the following codaessre as an example.

1 StateAttrs attr = Attributep (Statelndex);
2 attr—>mcColors. Insert(Colorindex);
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The methodAttributepreturns eStateAttr*pointer to the attribute specified Btatelndex

If there is not an attribute yet, a void attribute will be dezhand returned. The pointer
then enables the access to the attribute’s according cel@ansl its methods, for instance,
for inserting a color.

If the color set belonging to a state shall only be examinatnbt changed, the method
Attribute which returns a constant reference to the according atérisbould be used.
Doing so, unintentional changes of the attribute can bedeebi

Accessibility Operations

The Accessibleoperation, which ensures that all states in a generatoreaghable, is
reimplemented inTmtcGeneratar although accessibility does not depend on colored
markings. It is necessary, because the base class implatoendoes not take care of
possible attributes when removing unreachable states.rdihglemented method, by
contrast, deletes both the forbidden states and theibait#ss.ISAccessibleould be in-
herited from the base class, but for consistency, a wrappeatibn is implemented in
TmtcGeneratar

The StronglyCoacand methods which address the stronlgy coaccessibilitye ba be
implemented in TmtcGenerator, as the color status is theiarproperty to observe.
Both operations are based on the metBbnglyCoacSethich returns a state set with
all strongly coaccessible states. As this function woufddfthe original generator by
inserting marked states, a copy of the generator to examset iup andtronglyCoacSet
is applied on the copy. Therefore, the original generatesdwt need to be modified for
finding the strongly coaccessible states andsS&tronglyCoacan be called on constant
generators.

The functionality of the metho&tronglyCoacSet as follows. First, it iterates over all
the generator’s colorg. All states labeled with the current colqrthen are set as marked
states in the classical way, such tl@amaccessibleSétom the base class can be car-
ried out. This method returns the set of coaccessible s@atgsrelating to the classical
markings - what in this case means - to the current ogloFhe intersection of all those
coaccessible state sets for all coloréinally results in the strongly coaccessible state set
QstrcoacWhich is returned.

1 StateSet StronglyCoacSevt¢id) {
2 State Set Qstrcoac;
3 for all colors ¢ of generatorG {
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clear marked states;

set all states labeled witlei as marked states;

I/l perform coaccessible operation from TaGenerator
StateSetQmp = CoaccessibleSet();

Qstrcoac= Qstrcoac * Qtmp;

© 00 N o o b~

}

10 clear marked states;
11 return  Qstreoac;
12 }

StronglyCoaaises this result and deletes all states being not stronglycessible. Com-
paring the strongly coaccessible state set with the geméragtate set in the method
IsStronglyCoaallows an assertion about the generator being stronglycesaile or

not.

3.4 Further Functions

Further important functions related to the supervisontimre implemented in separate
files. This concerns

e functions such aBeterministi¢ Project andParallel, and

¢ the strongly nonblocking supervisor computatiorsunpConNB

Their realization shall be explained in the following sens. Most of the particular

functions’ implementations take more parameters thanlatedp necessary. That is why
wrapper functions which only require necessary parametaigepresent the user inter-
face are established.

3.4.1 Deterministic

The functionDeterministic(see Section 2.1) takes a nondeterministic mtcGenefator
and creates a deterministic generator that has the samel@dosl colored languages as
the original one. This resulting generator is inserted theoempty mtcGenerat@get.

1 void Deterministic( const mtcGenerator& G,
2 ey
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3 mtcGenerator& Gdet )

At first, the function checks if there exists at least ondahgtateqq. If there is none, the
function returns. Otherwise, one initial st@fgget is inserted iNtdGget.

In the classical theory, one of the original initial statesng marked would lead to the
resulting generator’s initial state being marked, too. €wning multitasking automata,
this rule is adapted in that way th@&e's initial state gets all color labels of all initial
states of the original generat@. Therefore, for each initial staig ; a setC; with its
respective colors is generated and assignésltgs initial stategg get.

Qo,det = Gget. INSInitState ();
for all qoi in G {
ColorSetC = StateColorsqo,);
if (C#0)— Gget- InsColor (@, det, C);

o A W N P

}

To determine all other states to insertGget, We start alG’s initial states and follow all
feasible strings. All states which could be reached whedovohg a particular string are
combined to separate state s€s For each of those state sets, a stai is inserted
into Gqet. Following the classical theory, a marked state containe@;iwould lead to

the equivalent state; get also having to be marked. Related to multitasking automata
this means, that all colors appearing@nhave to be present iy get, too. Therefore, an
iteration over all states i9; is started and all single states’ color sets are addegte.

Gidet = Gget- INSState ();

for all statesq in Q {
ColorSetC = G. StateColorsg);
if (Ci#0)— Gget. InsColor @iget, Ci);

o A W N P

3.4.2 Project

Within the Project operation (see Section 2.2), there alsstates to combine. All states

0i reach Which, starting fronm, can be reached by transitions with events not being in the
high-level alphabeX o), are merged into a single staigyroj in the resulting automaton
Gproj- If asingleq reachis marked, then; proj also has to be marked. According to colored
labeling, the equivalent solution is that all colors appegin the respective original states
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0ireachhave to be transferred tp proj. This procedure is again carried out by iterating over
G’s affected stateg; reach and inserting the appropriate color s€fsnto g proj.

void ProjectNonDet( mtcGenerator& G,
const EventSet& Zppoj ){

for all local accessible states)eacn from q {

1
2
3
4
5
6 ColorSetC = G. StateColors(reach);
7 if (G#0)— G.InsColor @ iproj, Gi);
8

9

10 }

3.4.3 Parallel

The parallel composition (see Section 2.5) in the classieabry handles two stateg
andgp such that the new arising stagg, is marked, if both original states were marked.
However, if only one state is marked, but the regarded stae the other automaton does
not have any marked state, then the composed system’s Emiistate has to be marked,
too. In all other cases, the new state stays unmarked.

Regarding colored markings, the procedure is very much anees All colors, which
appear ingy andgy have to be inserted tg » as well. All colors being part of one state
g1 or g2 and which do not appear in the respective other generatdk;, atso have to be
inserted taj ».

In order to easier compute the parallel composition for ggtioes with colored markings,
a helper function calle€omposedColorSetas implemented to determine the resulting
state’s color labels.

As parameters, both original generat@sandG, are passed together with their current
statesq; andqy. Their particular color set€; andC, are also given as parameters, al-
though it would be possible to compute them in the functiselit In case of multiple
usage as in thBarallel function, however, it is more efficient to generate theserceéts
once and then pass them to the particular subfunctions.

Eventually, a reference to a color set where to save the cesatboolors has to be passed.
These colors can afterwards be inserted to the new state abthposed system.
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The function is realized as follows.

1 void ComposedColorSet(

2 const mtcGenerator&Gy,

3 const Idx g1, ColorSet&Cy,
4 const mtcGenerator&Gs,,

5 const ldx g2, ColorSet&Cy,
6 ColorSet& Ceomposed ) {

7

8 AttributeColoredState attrl , attr2;
9 attrl = G;. States (). Attributed);
10 attr2 = G;. States (). Attributedq);
11

12 if g is colored {

13 Ve €Cq, do {

14 if (el {

15 if g2 is colored and (¢ €Cyp) — Ccomposed INSEIt(Gi);
16 }

17 else — Ccomposed INsert(c);

18 }

19 }

20

21 if g is colored {

22 Vej €Cq, do {

23 if (cj#&C1) — Ccomposed INSEIt(G);
24 }

25 }

26 }

At first, both original generator’s current states’ atttémiare obtained. They are neces-
sary for accessing the color sets of the respective states.

Then, an iteration over all colors contained in stad@s started. If a particular colas;
appears in generator 1 and generator 2, it is only taken ovetresulting generator if
it is also contained in the second generator’s current.stéie condition ifgy is colored
or not from line 15, can be checked with low computationatgoEhat is why it is tested
before all colors are gone through in order to fapd
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A color only appearing in the first generator is directly itied to the composed color set.

In the next step, the second iteration is carried out overaddirs ofg,. Colors appearing
in both generators have either been considered when exantis colors or they are
irrelevant, because of not being partpfs labels. So, only those colors solely existing in
generator 2 have to be regarded. Their subset which is cautang, consequently has
to be added to the composed set.

3.4.4 SupConNB

The SupConNBunction implements the computation of the supremal cdiatbte and
strongly nonblocking (SCSNB) supervisor (see Section @) a given model and an
appropriate specification. In fact, it is only a wrapper fiwre for SupconParallelwhere
the implementation is actually realized.

1 void SupconParallel(const mtcGenerator&Gyjant ,

2 const mtcGenerator&Ggpec,
3 R
4 mtcGenerator& Gres )

The rules for markings in the classical way and for CMGs thgrare the same as de-
scribed in the section parallel (see Section 3.4.3). Onlgrscappearing either in both
generators’ current states or appearing only in one redatd¢e and not being part of the
other generator are inserted to the respective resultingrgeor’s state. Consequently,
the color labeling of particular states is carried out ingdhene way than in Parallel, what
means that the already familiar functi@omposedColorSetan be used again.

Inthe first step, both generators’ color S€fgnt andCspecare established. They comprise
all colors occurring in the plant or the specification. The&ayting from their initial states
do,plant aNddo specWe begin with finding out about their color labels. For thajpsLom-
posedColorSeis called with the plant’s and the specification’s resp&cpvoperties as
parameters. The resulting composed coloCeghposeds then added to the new inserted
initial state in the SCSNB generator.

ColorSet Cpant = Gpjant- Colors ();
ColorSet Cspec = Gspec: Colors ();

ColorSet Ceomposed
ComposedColorSet Gpjant, do,plant: Cpiant

g A W N P
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6 Gspec: Qo,spec: Cspec:
7 Ccomposed )

8 if  (Ccomposed” 0) {

9 ldX Onew = Gres. INsinitState ();

10

11 Gres. InsColor @new, Ccomposed
12 )

From the model’s and the specification’s current states wa firoceed by following
common feasible transitions. For each new pair of stedggnt, Osped reached by this
method, we insert an appropriate statétgs, compose its respective color set and set it
as the new state’s color set.

1 if (Qpiant, Osped 1S new {

2 ComposedColorSet Gpiant: dpiant: Cpiant »
3 Gspec, Ospec: Cspec:
4 Ceomposed )

5 if  (Ccomposed? 0) {

6 IdX Onrew = Gres. INSState ();

7 Gres. InsColor (@new: Ccomposed ;

8 }

9

10 }

Finally, all states forbidden by the supervisor, but algeadntained inGes, are deleted
after having erased their color labels.

1 for all forbidden statesSQsorbidden {
2 Gres. ClrStateAttribute Qrorbidden) ;
3}

4  Gres. DelStates Qrorbidden) ;

3.4.5 Statemin

The state minimization tries to reduce an automaton’s numbstates by merging states
without changing the generator’s langudgand - in the classical theory - the marked
languagd., generated by the generator. Accordingly, colored behavigrshall not be
changed when state minimization is applied to CMGs.
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In the classical theory, only states with the same markiatustcan be equivalent. This
means, either all those states to merge are marked, or noimerof Relating to CMGs, an
equivalent solution is that states can only be equivalétiigy possess the same colored
markings. That is, all colors appearing in one state alse babe contained in the other
states which should be merged with it, but no further ones.

The implementation of the state minimization algorithmuiegs two generators as pa-
rameters. The first one is the one to minimize, the second olaks khe resulting genera-
tor.

1 void StateMin( mtcGenerator& rGen,

2 mtcGenerator& rResGen, ... )

Within the function, all distinct color setS; of all generator’s stateg are established.
To every color se€; a set of those states which are labeled by it is assigned. Wiats
is saved in the magC;, Q;) which contains all possible color sef$ and the particular
stateQ; where they occur.

The vector{Q) also receives all state sets with states labeled by the salors c

First, all uncolored stateg,; are inserted to a state s@t, which is added tdQ) at

positionk = 0.

1 if there are uncolored stateqy; {

2 loop over all quj and add them toQy;
3 add Q, to vector (Q);

4 increasek;

5 }

Afterwards, an iteration over all colored states is starfdtistate color sets which are
not yet contained ir{Cj,Qj>, thereby are inserted into it. Finally, the states are teser
relating to their color labels to the corresponding state se

for all statesqg {
if current state‘s color seGe (Cj,Qj) {
insert g into Q;
}
else {
create new state setQpew and insert qj;

insert {Cj, Quew} into (Cj,Qj);

o N o g b~ W N P
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° }

After these sorting procedures, all state $@{sare added to the vectdQy). At the end,
a loop over(Qy) is carried out. The color labels for each state in the respestate set is
detected by examining the first state. If it is nonempty, #asas the color marking of the
resulting generator’s equivalent state.

for all state setsQ; of (Cj,Qj) {
add Qj to (Qu);

increasek;

loop over all blocks (Qx) {
get color setC¢ of first state in (Q);
if (C1#0)— set Cc1 for equivalent stategnew iN Gres;

© 00 N oo o B~ WN P

3.4.6 Uniquelnit

The functionUniquelnit checks if there are multiple initial states. If so, they apene
bined to a new initial statgp, unique getting all color labels the original initial states ;
possessed. The implementation of the respective mechasiss follows. The initial
states’ single color sets are read and, provided that theepatrempty, inserted into the
new initial state’s color set.

1 void Uniquelnit( mtcGenerator&G ) {
for all qoi {

ColorSetC = G. StateColorsdo,i);

if (C#0) {
G.InsColor @o,unique; C);

© 00 N OO o B~ W DN
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Chapter 4
Examples

In this chapter, two examples which have been evaluatedyubm libFAUDES multi-
tasking plugin are presented. The first one is an adaptioheo€at and mouse problem
presented in [RW89] that was modified by Cury [dQCO04]. It epéfies the use of colored
marking generators and the possibility to split up modelg&sier computation.

The second example describes a part of the Fischerteclark plproduction plant model
at the Chair of Automatic Control at the University Erlang@&his example is adequate
to demonstrate the efficiency of multitasking hierarchaaitrol and its algorithms.

4.1 Catand Mouse in a Maze

In the cat and mouse in a maze example, the application of laoohwltitasking control

is demonstrated. To this end, a model that consists of des@rgonents is controlled by
disjoint supervisors instead of one monolithic supervidoradvantage of doing so is the
fact that the number of supervisor states is reduced. In cwatibn with colored marking
supervisors, it can also be assured that the completiorvefaendependent tasks can be
achieved.

4.1.1 Description of the Example and the Requirements

A maze with two identical floors and five rooms on each floor v&stigated. The floor
plan is shown in Figure 4.1. At the beginning, there is a cabom 0 on the first floor.
A mouse is situated in room 4 on the second one. For both asitinate is some food in
room 3 on floor 1.
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Figure 4.1: Both floors of the cat and mouse in a maze example

Cat and mouse cannot move freely from room to room. The plegséths for each animal
are shown in the figure above. Each eventy(i) indicates that the mouse moves from
room X to room y on level i of the maze. An everk-y(i) accordingly denotes the
movement from room x to room y on level i for the cat.

As there is a connection between both floors in each levetisr, floor changes are
possible for both animalsu(v) andcu(v) specify the mouse and the cat, respectively,
moving from room 0 on floor v to room 0 on floor u.

All room changes except the uncontrollable
{c3-1(1), c1-3(1), c3-1(2), cl-3(2)} which specify the cat going from room 3
to room 1 or vice versa can be prevented, as they represeinoltable events.

eventsz,c =

Preventing one event in this case can be imagined as a doohwhn be opened and
closed by a supervisor. For the four uncontrollable evemset would be no doors to
close, so on both levels the cat can move from room 3 to roonvicerversa without the

supervisor being able to forbid it.

The task of the supervisor is to avoid that cat and mouse stdlyel same room. Fur-
thermore, it has to guarantee that both animals can move métkimal freedom, that
returning to their respective initial rooms is possibled #imat they always have a chance
to access the food.
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4.1.2 Modeling and Specification

For modeling the plant, room models for each room on both$lamd for both animals
were created. This resulted in twenty room models for fiveneon two floors and two
animals. An automatof! denotes the model for the cat in room r on floor I. As an
example, the model automat@j for room 0 on floor 1 is shown in Figure 4.2. All other
rooms are created in the same way.

c0-1(1)

S=C

{Cinit }

Figure 4.2: ModeC} for room 0 on floor 1 for the cat.

G

A stateCx_y(i) thereby represents the number of cats (y) being in room x @m fldn
this example, the colored sta@) 1(1)expresses that the cat should always be able to
return to the initial state of room 0 on floor 1. The other on@esents the empty room.

In addition to the single room models, there is a counter odeach floor (Figure 4.3).
It observes the fact that there only is one cat. It is necgdssacause otherwise the parallel
composition would generate states for more than one caeisytbtem, what is excluded
by the example definition.
o

{Cinit, Ceat}
Figure 4.3: Counter modé* for the cat on floor 1

A supervisor now shall assure that it is always possibletfercat and the mouse to return
to their initial states, what implements that the cat caragsvcome back to room 0 on
floor 1 and the mouse to room 4 on floor 2. Recall that this reguént is captured by

labeling the respective stat€® 1(1)andM4_1(2)with the colorCiyj.
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Other states to be marked with separate color€&8rel (1)which is marked by coloC.4;
andM3_1(1)which is marked by colo€nouse These states describe the states where the
cat or the mouse, respectively, are eating independewity &ach other.

Sticking to the classical theory with one sort of markedestaindependent attainability
of all marked states could not be ensured. In fact, the sthggerhe cat is eating and the
one where it is in its initial state can impossibly be assigtteone single marked state,
as the cat cannot be in two rooms at the same time. Moreowap)ysimarking multiple

states would mean that it does not matter which of the statesctbe reached. However,
in our case we want the cat to both come back to the initia¢ statl be able to eat. What
follows is that the different meanings of markings go losewltcomposing the system and
thus, the supervisor cannot guarantee the possibilityacrall originally marked states.

With the introduction of colored markings and the appraerieolorsCeat, Cmouse and
Cinit, by contrast, a multitasking supervisor is able to guaeattie independent reacha-
bility of these three aims from all the system'’s states.

The specification also is divided into several parts, oneifipation automaton for every
room. One example for room 0 on floor 1 is shown in Figure 4.depresents a counter
with three statecO_0(1)denotes that the room is emptf) _1(1)indicates that the cat is
inside andm0_1(1)stands for the mouse being present. So, this specificatitmmeaton
prevents the cat and the mouse being in one room at the sameatsnboth animals only
can enter empty rooms.

Figure 4.4: Specification automatﬁ% for room O on floor 1.

The coordination between the single room models on one laamtbbetween the models
and the specification on the other hand is always realizeddmrding the room changing
events.
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4.1.3 Computing the supervisor

Before being able to compute the supervisor, the room mddels to be composed by
parallel composition. Eventually, a plant generator andexsication generator shall be
available. As this plant generator for level 1 consists ofsgfies (as well as the plant
generator for level 2), the composition

ct=gGlcrlczlicslicilict

for the cat on level 1 shall be presented in autom&b(Figure 4.5) as an intermediate
result. The cat’s possible paths can easily be retracedn\iteecat goes up to level 2, we
arrive at state 4 and the automaton is not able to relate toat®movement in level 2.
We return to the initial state 1 when the cat descends.

Figure 4.5: Compositio@! for all room models concerning the cat and level 1.

The composition for the other level and for the mouse’s betklicompositions is realized
in the same way.

The specification composition for level 1 results as

D' =Dg || D1 || D3 || D3 || D3.

With those compositions available, we are able to compute stkongly nonblocking
supervisors, one for each level. They both consist of 2éstathat implements that the
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supervisor deleted 9 states on every floor. They either vegbedden by the specification
or resulted in blocking. The supervisor for level 1 is showirigure 4.6.

The parallel compositiod* || D? of both modular supervisors results in a nonblocking
generator with 82 states. Hence, the two modular supes/aernonconflicting and can
separately be implemented to achieve strongly nonblockorgrol while obeying the
given specification. Furthermore, it turns out that a mahaisupervisor for the control
problem under study also has 82 states. This means that tthelancupervisors achieve
maximal permissive control which is due to the fact thatladlred events are controllable
[LWO02].

Altogether, the insertion of colored markings and the usa ofodular structure lead to

two crucial advantages. First, the completion of sevesigavhich is indicated by appro-

priate color labels can be guaranteed by the designed sspesyand second, the usage
of multiple modular supervisors reduces the state size efrtiplemented supervisors.

For this example, the number of statesGhandC? amount to 54, whereas the mono-
lithic supervisor has 82 states. For more complex systemss proportion between the

respective state numbers can be much higher.

4.2 Fischertechnik Production Plant

The Fischertechnik production plant model at the Chair ofofuatic Control shown in

Figure 4.7 is predestinated to demonstrate the use of askKtrtg hierarchical control. It

consists of several conveyor belts transporting parts fastack feeder to two machine
heads with a drill on each and finally brings the finished wa&es to a deposition area.
All machine parts can thereby be modeled for themselves everal levels of specifi-

cation can be used. Furthermore, the completion of multgsks is ensured by colored
marking.

4.2.1 General Description of the Production Plant and the Chsen
Part for this Example

The description of the plant operation follows the notatioRigure 4.8. Workpieces enter
the plant from a stack feeder sf. A sensor detects if thereuayevorkpieces and if so,
they are transported by conveyor belt cb1l and other onestlorbachine heads mh1 and
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Figure 4.7: Picture of the Fischertechnik production plant

Legend:

sf - stack feeder
cb - conveyor belt

pu - pusher

dep - reject deposit

rt - rotary table

mh - machine head

d - drill

rts - rail transport system
rc - roll conveyor

Figure 4.8: Fischertechnik Production Line: Schematicriiesv.
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mh2 where processing takes place. At the end, the workpereestored in one of two
deposition areas (rcl and rc2).

All elements of the plant are labeled consistently. Thekstaeder is specified &, the
conveyor belts asbX The machine heads with the drills are abbreviatethbXdY the
rotary tables ast and the workpiece detection elements which recognize the &f
workpiece asvpdetX X or Y, respectively, stand for the particular number of &meent
and are necessary for an unambiguous labeling. The shaeetsdwetween the separate
conveyor belts which coordinate the behavior of the comgqéant arecbX-cbYwhere

X describes the origin and Y the destination of the respedatigrkpiece.

In this work, we regard the framed part of the plant schemeigurie 4.8. It consist of
conveyor belt cb4 which is combined with a machine head (rijl@bnveyor belt cb11
which also takes the role of a rotary table (rtl) and convégdr 7 (cb7), which brings
along a workpiece detection element. It allows to distispwiorkpieces of separate types
when they are going from cb7 to cb1db{- cb11) or from cb11 to cb7dbl1l- cb7). Thus,
workpiece characteristics can be regarded and differdmabers for different types of
workpieces can be considered in the model and the speaficafi the conveyor belt
where they arrive.

In our study, we consider two types of workpieces: Workpigogenotes a workpiece
which is completely and correctly processed, whereas weck® stands for workpieces
which have not yet been processed or which are of insufficjeatity. Therefore, those
workpieces have to be transported to cb4 where processirgpacessing, respectively,
takes place.

Workpieces which are destined for the chosen part of thet play either arrive at con-
veyor belt cb12 or cb15. Those from cb12 shall be drilled aadsported via cb11 and
cb7 to cbl5 (Figure 4.9) or be directly returned to cb12 withioeing processed. If a
workpiece is of bad quality, which is detected when being edofrom cb11 to cb7, it
shall return to cb4, be reprocessed, and afterwards beedetito cb12. Workpieces ar-
riving at cb7 and coming from cb15 also shall go to cb4, be gssed there and finally
leave the section towards cb12. If one of those workpiecdstiscted as already finished
when leaving cb7 towards cb11, which means it is alreadyga®ed and of good quality,
it need not be drilled any more and therefore shall be stoppetil1 and be returned to
cb15.

Colored marking assures that all tasks can be terminateklisioase, it is determined that
all workpieces can be drilled and that all conveyor beltsredarn to an empty state.
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wp2

wp2 o
— T Parts arriving
—
wp2 wp from cb12
wp
wpl 7wp

"

1
Parts arriving

from cblSi

Figure 4.9: Paths of workpiece transportation in cb4 - chiyl-1c

Of course, the supervisor to develop has to guarantee $growgblocking and shall
ensure that each workpiece can be drilled.

4.2.2 Modeling and Specification
Level O

The modeling of the considered production plant’s part isied out in a hierarchical
way. The hierarchy level is attached to every automatorrsena square brackets. On
the first level all single elements of this section are dégcdiias automata. Doing so,
we get automata cb4[0], cb7[0], and cb11[0] which denotectirereyor belts, mh1d1[0]
which stands for the machine head and the drill, and rt1[0¢wvbdenotes the rotary table.
wpdet7[0] or wpdet11[0] are special parts that detect taristof a workpiece arriving at
cb7 or cbll, respectively. Note, that detection of a workgiis only possible when it is
transported from cb7 to cb11 or the other way round.

The colors introduced for the observed part of the plant er¢fst way, that every con-
veyor belt is able to return to an empty state. Furthermone, alor which denotes
that a workpiece has just been drilled is introduced. Thues,averall color set results

in C = {Curilled> Cets> Ceb7, Cebra}-



4.2. FISCHERTECHNIK PRODUCTION PLANT 42

In addition to the mentioned models, there is cb7cb11[@§Fe 4.10), which makes sure
thatin cb7 or cb11 noillegitimate states are possible.f&tance, let there be a workpiece
transported from cb11 to cb7 which is detected as one of fisgrit quality. It would
be transported back to cb11l. Consequently, when returnirgpil, we already know
that it has not yet been processed accordingly and theref@elo not need to regard
the possible behavior for a workpiece 1. The model cb7cltaKes care of all those
possible dependencies and reduces the state space of ditehngesmodel accordingly.
Nevertheless, it does not constrain the system in an uradidsiway. It does not say what
events to allow after a special type of workpiece appeatesimiply excludes impossible
events that unnecessarily enlarge our model.

cbiwplar

ch11[0]

cb7-cbll

cbllwplar

cbllwp2ar

Figure 4.10: Model of the automaton linking cb7 and cb11.

As an example, of our proceedings, the hierarchical dedighlil and the rotary table rt1
shall be regarded (Figure 4.11). First, the model for thevegor belt cb11[0] is realized.
The shared eventsh7- cbll andcb4-cbll lead to a movement of the conveyor belt
in the required directioncpll+x+y or chll-x-y). The event cbll symbolizes the
time passing until the workpiece arrivesb{1wpar, cbllwplar, or chllwp2ar). It is
necessary, as the movement could be stopped before theewmoeiof an arriving event,
which leads back to the initial state, or afterwards. In thtel case, the procedure for
bringing the workpiece away has to follow. It is similar tethescribed event chain, only
the arriving events are replaced by the leaving arbddwpl v4 andcb1lwpl v7.

The according specification consists of two parts and is shioglow that automaton.
cb11[0]_specl defines the correct functionality of cbllsadering in which direction
workpieces are transported. cb11l spec2[0], howeverrasrthe handling of different
types of workpieces. Both specifications are combined bgllghicomposition to a sin-
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cb11[0]

cbllstp

cbllstp

cb11[0]_spec2-+: = cbl1[1]

cbllwp2ar
cbllstp

{CCbll} cbllstp

Figure 4.11: Model, specifications and supervisor for cbiilewel O.
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gle one. Together with the model cb11[0] the supervisor {#1%up in Figure 4.11 is
computed.

wpdet7[0]

cb7wplar

cb7wplar

cb7stp

Figure 4.12: Workpiece detection element modeled for cb7.

In our plant model, the workpieces are distinguished dejpgnaon the number of mag-
netic pins located on the workpiece (Figure 4.12). Theyeegittave 0O, 1, or 2 pins which
means they represent a workpiece of the first type, or 3 or 4 wimat makes them a
workpiece 2. After the everttb11- cb7 which indicates that a workpiece will arrive, the
number of sensor signaé¥wpl ands7wp2 that occur until the conveyor belt stops are
counteds7wpl ands7wp2 denote the same physical event, but the different labeing i
chosen to support the later abstraction step.

Before being able to abstract unramified process chainslijob sup, the validity of the
observer condition for this supervisor and the abstradiphabet p; = {cb4-cbll,
cbl1l-ch4, cb7-cbhl1l, cbll-cb7, chllwpar, chllwplar, cbllwp2ar, chllstp} has
been verified with a positive result. Then, the followingjprtion step for cb11[0]_sup
with Zpr0j leads to the abstracted automaton cb11[1] shown in Figure. 4he other
plant elements such as the machine head with the drill mhidiecconveyor belts cb4
and cb7 are dealt with the same manner (see Appendix A.1).

Level 1

On level 1, the combination of the rotary table and the coavéelt is realized. The
parallel composition of cb11[1] and rt1[1] (Figure 4.13fiah represents the abstraction
of the controlled rotary table, results in the level 1 modellrt1[1].r t 1nvx andrt 1nvy
describe the rotation in x or y directiort, 1st p occurs if the rotary table stops.

The corresponding specification also consists of severaipooents. cb11[1]_spec
thereby assures that the conveyor belt does not move whéealileerotates. rt1[1] specl
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takes care that the conveyor belt only can start when the fabiot rotating. The sec-
ond specification for the rotary table, rt1[1]_spec2, déss the necessity of a rotation
depending on the shared events. Building the parallel csitipo of those three specifi-
cations allows us to find a supervisor cb11[1] sup for theseéabstraction level.

After having checked that the observer condition is fuldillor that supervisor and
the corresponding abstraction alphal¥oj = {cb4-cbll, cbll-ch4, cb7-cbll,
cb1l-cb7, chllwpar, cbllwplar, cbllwp2ar, s1lwp?2 }, the abstraction step is carried
out for cb11[1]_sup and only the shared events that mak&g4n are left in the ab-
stracted generator cb11[2]. The rotary table events doomgier appear on this level. The
abstracted generator version cb4[2] for conveyor belt sbegbmputed in the same way
(see Appendix A.1).

Level 2 and Final Result on Level 3

All level 2 abstractions of the single blocks around cb4, abd cb1l can in a further
step be composed to the model cb4cb7cb11. To ensure nommpekspecification with
a single state and self-loops for all possible events igede&or this one, the supervisor
will only take care of nonblocking, as the specification daes constrain the plant’s
behavior.

To attain the controlled level 3 plant model another absitvacstep is carried out. The
resulting generator then consists of 37 states.

4.2.3 Hierarchical Structure

The hierarchical structure which results from that proceds shown in the subsequent
diagrams (Figures 4.14 and 4.15).

As already described, the specification cb11[0]_spec fbl dwnsists of two parts which
are composed by parallel composition. The resulting superfor it and the correspond-
ing model cb11[0] is then abstracted to cb11[1]. On this et abstractions for the
conveyor belt, the rotary mechanism and for the workpiec¢eadti®n elements are com-
posed. With the appropriate specification for the first lé¥#ggure 4.14, right side) the
supervisor for level 1 is computed and afterwards abstilact¢éhe next higher level.

In the same manner, the other conveyor belts cb7 and cb4dingdheir respective ma-
chine parts are modeled and specified. cb7’s workpiece titsteglement is, as well as
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rtl[1]

rtlstp

cb11[1] spec rt1[1] specl

cbllwpar

cb7-cbll

cbllwplar

rtl[1] spec2

rtimv

cbll-cb4

rtlmvx

rtlmvx

cb11rtl[2]

cbllwpar

Figure 4.13: Model, specifications and supervisor for cbiid rél on level 1.
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' cb1l1rtl[2] '

A

cb11rtl[1]_sup

(Wpdetll[l] (cbll[l] ) ( rti[1] ) (cbll[l]_spec) (nl[l]_spec)

A A A

(rll[l]_specl) (rtl[l]_specZ)

(wpdetll[o]_sup) (cbll[o]_sup) rt1[0]_sup
(cbll[O] ) (cbll[O]fspec) ( rt11[0] ) (rtl[O]fspec)

A

(cbll[O]fspecl) (cbll[O]fspecZ)

Figure 4.14: Hierarchical structure for level 1 and 2 fortbl
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with cb11, composed with the level 1 supervisor. As therenatefurther parts such as
drills or a rotary table to regard, no level 1 specificationesessary. Hence, the composi-
tion’s result cb7wpdet7[1], the level 2 abstractions cttii1[2] and cb11rt1[2], and the
model cb7cb11[0] are composed to the plant part's model.afpeopriate specification
only consists of one state and self-loops for all events.s€quently, the supervisor to
synthesize shall only guarantee strongly nonblocking amateover, does not constrain
the model any further. The final result cb4cb7cb11[3] arfses a further abstraction
step and can be used together with the rest of the overall. plan

The complete hierarchy tree can be found in Appendix A.2stigervisor cb4mh1dl[2]
and the separate models and specifications used in AppentlixAe automaton for the
top-level abstraction cb4cb7cb11[3] with its 37 statesavjaed in Appendix A.2-17.

' cb4cb7cb11[3] l

A

(cb4cb7cb11[2]_sup)
(cb4cb7cb11[2]) (cb4cb7cbll[2]_spec)

cb4mh1d1[2]
cb7wpdet7[1]

cbl1rtl[2]

cb7cb11[0]

Figure 4.15: Combination of all components to the stronghpnbiocking supervisor
cb4cb7cb11[2] sup which is abstracted to cb4cb7cbll[Bjerast step.

The Fischertechnik production plant example clarifies tbeessity of several markings
to ensure the completion of multiple tasks, what in this casant the production of
all workpieces (coloCgyrileg) and that all of them can be carried away again (colors
Ceta, Ceb7, andCepi1). Furthermore, this example verifies that the state spahect®n
can be enormous for complex systems. A monolithic superf@mothe chosen part of
the plant would possess 27,614 states, whereas the combimd@tiow- and high-level
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supervisors only leads to a sum of 277 states. Moreover, tmohthic synthesis requires
the evolution of a plant automaton with 2,336,400 stateslevthe largest automaton in
the hierarchical multitasking control has 254 states.

Together, this approach reduces the computational codttharmemory consumption in
the control unit very effectively. At this point, it has to loeentioned that the reduced
complexity of the supervisor computation and implemeatais accompanied with a
possible loss of maximal permissiveness. In our example, ¢he parallel composition
of all hierarchical supervisors leads to an automaton wst@@4 states which implies that
the control is more restrictive than the monolithic supsovi
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Chapter 5
Conclusion

This thesis first summarized the theoretical backgroundh@fmultitasking supervisory

control theory. Therefore, colored marking generators (Mere introduced as a model
that represents multiple tasks by states with differemrsolBased on such CMGs, rele-
vant properties such as strongly nonblocking have beendatred to express nonblocking
behavior w.r.t. different generator colors. Additionakgveral operations for CMGs in-

cluding the colored marking parallel composition, the super synthesis for CMGs and

tools for the hierarchical supervisory control of coloredrking generators have been
presented.

As the first contribution of this thesis, the realization etassary data structures and the
appropriate methods in a plugin for the libFAUDES softwabedry was described. In
particular, the clasmtcGeneratowas implemented as a representation of a CMG. It
extends theGeneratorclass which is suitable for supervisor synthesis in the Rigaa
Wonham framework by state attributes that serve for saviatg colors. The methods
of this class allow the user to insert colors into a multitaglgenerator, to delete them,
and to analyze and modify the respective generator. Fumibve, methods for generator
input and output are included. Additionally, the pluginyades functions for the parallel
composition of several CMGs, for state minimization, andtfe supervisor synthesis.
Despite its complexity, the plugin offers simple user ifaees and thus allows its users
to easily synthesize and analyze CMGs without knowing immglietation details.

Finally, the multitasking plugin was used to implement twamples, the cat and mouse
in a maze and the Fischertechnik production plant. Both @kasrshow the applicability
of CMGs, as they represent systems with several parallks tds both cases, strongly
nonblocking behavior can comfortably be specified with oedomarkings and the re-
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spective supervisors can be synthesized algorithmically.

Simultaneously using hierarchical design methods eveblesghe modeling of systems
with very high complexity, as separate system componentbeanodeled and controlled
on their own. Accordingly, the corresponding specificasiecan be divided into several
generators. This approach effectively increases the gfe@arity and thus helps to avoid
design faults. Furthermore, the number of states is draaiptireduced what minimizes
computational costs and the memory usage in the respeaciteot units. For instance,
the analyzed part of the Fischertechnik production plasulte in 27,614 supervisor states
when choosing a monolithic approach. In contrast, the gpt hierarchical system
uses 10 individual supervisors with a sum of 277 states.
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Appendix A

Fischertechnik Production Plant

A.1 Models and Specifications for Conveyor Belt 4 and

its additional components

Figure A.1-1: Conveyor belt 4: cyd|

cb4stp

Figure A.1-2: Conveyor belt 4: cli@d _specl
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cb4-cb11

0 cb12-cb4 °

cb4stp

Figure A.1-4: Conveyor belt 4: cljid _spec

chd+x t cbd
cb4-cb1 cb4wplv12
p 0 cha-ch11 e cbd-x ° t cba 0 cbawplv11 e

cb4stp

Figure A.1-5: Conveyor belt 4: ctid _sup

cb4-cb11

cb4stp
cb12-cb4

’ cb11-cba e cbastp ° Cb4'°b¢12 °

{ch4}

Figure A.1-6: Conveyor belt 4: chY
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{Carilted }

mhilv+z

Figure A.1-7: Machine head and drill: mh1@L_sup
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{Curilled }

‘ mh1start a

Figure A.1-8: Machine head and drill: mh1dlL

cb4-cb11

mh1start

Figure A.1-9: Machine head and drill: mh1d]L_spec

cb4stp

{Curilled }

mhiend
e {Carilled }
° e cb4-cb11

cb12-cb4 cb12-cb o

mh1start

cb4stp @
cb4-cb12 wo

cb11-cb4 cb4-ch12 {Curilled }
cbdstp mh1start
h1end
{ch4} mhien e mhlend

mhstart
mhistart| {Curilled 0
4 .
cb11-cbd e cbastp {Cyeflea}

cb4stp
{Cecta, Carilled }

Figure A.1-10: Conveyor belt 4 + machine head with drill: oiifLd11]
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cb12-cb4

cb4-cb11

mhiend

cb4stp

mhiend

cb4-chb12

Figure A.1-11: Conveyor belt 4 + machine head with drill: oi#L.d11]_spec

{Carillea }

cbastp {Carilled }

Figure A.1-12: Conveyor belt 4 + machine head with drill: cb#Ld11] _sup
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cb4-cb12

mh1start {Cdrilled}

Figure A.1-13: Conveyor belt 4 + machine head with drill: ot¥ld12]

A.2 Hierarchy Diagrams

l cb4mh1d1[2] l

A

cb4mh1d1[1]_sup

( cb4[1] J (mhldl[l]) (cb4[1]7spec) (mhldl[l]fspec)

A A

(cb4[0]_sup) (mhldl[o]_sup)
( cb4[0] J (cb4[0]_spec]

(cb4[0]7specl) (cb4[0]7spe02J

Figure A.2-14: Conveyor belt cb4 abstracted to level 2
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cb7wpdet7[1]

(Wpdet?[l]) ( cb7[1] J

A A

(wpdeﬂ[O]_sup) (cb?[o]_sup)
( cb7[0] ] (cb7[0]_spec]

(cb7[0]7specl) (cb7[0]7specZJ

Figure A.2-15: cb7 and the workpiece detection element ¢coeabon level 1
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cbll-cb4

b15-cb7
B 19

21 mhlstart mhlstart

sllwp2

L - ¥ cbl5-cb7
cb11wplar ] cb15-cb7 @ 15
—§‘\“\‘~\\\ s1lwp2

@ cbTwplar

s
g 'r;

mhlstart cbll-cb4

4

cbllwplar |4

cbl5-cb7|

mhlstart] Ml
mhlstart cb7-cblg ba-cbl2
Fb15-cbN
cb7wplar L— |
cbd-cbl
)

cbl2-cbi

cbl2-cb4 [T

cb7-cb15| |

cb7wplar

cb7wplar
I : cbl2-chb
STup2
cbatcbl

T cbd-cbl2 Ly

mhlstar

cbTwplar

mhlstart

@ cb7wplar JRavAL

cbl2-cb4

cbwpla
s1lup2

cba-cb12]]

cbl2-cb4

sTwp2

™
cb4-cbl2

cbl2-cb4

cbwplaz

Figure A.2-17: Resulting level 3 abstraction with 37 statéslor meanings: blue = cb4
empty, red = cb7 empty, pink = cb11 empty, green = workpiedkedr



