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Chapter 1

Introduction

A large variety of technical processes like production lines or communication systems can

be modeled as discrete event systems (DES). When discrete events appear, they release

a transition in a space of finite states. For modeling large systems, they are often divided

into small parts and put together by the synchronous product. By using this method one

disadvantage is the exponential growing state space. In spite of increasing computational

performance and cheaper memory, limits are reached very fast.

After the final presentation of a seminar at the chair of automatic control in summer 2009

I was really impressed about the possibilities of BDD-based controller synthesis. For

simulating the performance results I searched for open-source code examples. Although

many universities published reports about this topic, their libraries are not available under

a public license. This was the initial spark for me to work on this bachelor thesis.

In this thesis I will consider a software implementation of a plug-in for the libFAUDES

based on transition relations with Binary Decision Diagrams (BDDs). Symbolic methods

using BDDs are used to represent relations for modeling, analysis and synthesis of DES.

The advantage is that operations on a set can be calculated directly on BDDs without an

explicit state traversal.

The Friedrich-Alexander University Discrete Event Systems library (libFAUDES) is a

C++ library that implements data structures and algorithm for finite automata and regular

languages. The library takes a control theoretic perspective as introduced by P.J. Ramadge

an W.M. Wonham in the 1980’s. Since then, many researchers have contributed to super-

visory control theory, including extensions for hierarchical, modular and decentralized

controller synthesis. The main purpose of libFAUDES is to provide a software environ-

ment for the implementation of recent approaches to the control of discrete event systems.
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At the beginning as less theory as needed for understanding the basic concepts and al-

gorithm is introduced by a short summary. If you have never heard of BDDs or discrete

event systems before, please have a detailed look at the introductions from Andersen

[And97] or Wonham and Ramadge [WR97]. The middle part was used for presenting

how to implement these procedures for achieving C++ source code and barriers that had

to be resolved. The performance and correctness had been verified and the results can be

seen on the figures of chapter 4.

My special thanks go to my mentoring professor Thomas Moor for the great support

during my work loke testing the code, supplying test scenarios and endless change

requests. Besides this, I’m much obliged about any sort of distraction by my roommate

at the "DES-Labor" Thomas Wittmann seconds before going mad while searching code

bugs and his nice ’elevator’ example. I also want to thank Fabian Kampfmann for

proofreading the written part of this project.
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Chapter 2

Synthesis of Discrete Event Systems

A discrete event is a dynamic system which reacts on specific discrete events. Ramadge

and Wonham have established the modeling of discrete event systems (DES) by finite

state machines (FSM) [RW87].

The task of controller synthesis is to modify the behavior of a given discrete event system

in order to achieve a given set of constraints dictated by the specification. The resulting

supervisor avoids strings that cause illegal conditions like blocking via dead or live locks

on the automaton-behavior or physical problems like buffer overflowing in an automated

manufacturing system on the other side.

The following chapter of the bachelor thesis describes the basic concepts and algorithm of

the standard synthesis. After this, BDD based variants are introduced for achieving better

performance results.

2.1 Introduction to ROBDDs

Before getting into detail of the algorithm, a short introduction to Binary Decision Dia-

grams (BDD) is needed. Bryant et al described in [Bry86] in detail the basics and opera-

tions. Please keep in mind that it is only possible to give a short introduction.

BDDs are rooted, directed, acyclic graphs for the representation of Boolean functions.

They always start with a root node and have two outgoing edges for each node. One for

the true and the other for the false evaluation of a variable. So each node level represents

one variable. (This means that the maximum depth of levels is smaller or equal than the

variable size.)
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Figure 2.1: graphical representation of the Shannon expansion

Besides the decision nodes two terminal nodes called 0-terminal and 1-terminal are ex-

isting. These terminals represent the return value of a function. If the ordering of the

variables is fixed the diagram is called Ordered Binary Decision Diagram (OBDD).

One of the most common ways building a BDD out of a Boolean Function is the classical

Shannon expansion:

f (a,b,c, . . .)) = (a∧ f (1,b,c, . . .)))∨ (a∧ f (0,b,c, . . .))) =

=
(
a∧

(
(b∧ f (1,1,c,d, . . .)))∨

(
b∧ f (1,0,c,d, . . .))

)))

∨
(
a∧

(
(b∧ f (0,1,c,d, . . .)))∨

(
b∧ f (0,0,c,d, . . .))

)))
(2.1)

The Shannon expansion has to be recursively applied until every variable is eliminated.

The graphical representation can be seen in figure 2.1.

Another possibility is to set up a truth table for the Boolean function. These tables show

the return value of the function for each possible variable evaluation.

For the function f (a,b,c) = b∨ c (see figure 2.2 for the truth-table and BDD) 23 input

vectors are existing. The BDD can be constructed by inserting a path for each row of

the table and finally connecting them with the corresponding terminal node of the return

value.

For improving the memory size, applying the following rules gives a Reduced Ordered

Binary Decision Diagram (ROBDD):

1. Merge any isomorphic sub graphs.

2. Eliminate any node whose two children are isomorphic.
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Figure 2.2: truth-table and binary decision diagram for f (a,b,c) = b∨ c

After applying these rules on the example function f (a,b,c) = b∨c the resulting ROBDD

can be seen in figure 2.3.

The evaluation of a function is even simpler. All variables are replaced by the evaluation

values. Incoming edges are connected with the target of the true-edge if the assignment of

the variable is positive and otherwise. The remaining terminal node represents the return-

value of the function is reached.

The existential quantification of a variable xi for a function f (~x) where 1 ≤ i ≤ |~x| is

defined as

f |xi=1 ∨ f |xi=0

Structure and size of a BDD depend extremely on the variable ordering. With a well

chosen ordering, it is possible to achieve linear complexity. For the worst case the graph

size grows exponential in the number of variables.

For example the output of a n-bit adder over the input variables a1,a2,a3, . . . ,an and

b1,b1,b2, . . . ,bn for any output-bit ci out of c1,c1,c2, . . . ,cn the BDD-representation has

linear complexity for the ordering a1 < b1 < a2 < b2 < .. . < an < bn and exponential

growing for a1 < a2 < .. . < an < b1 < b2 < .. . < bn.

On the other hand, the representation of a n-bit integer-multiplication is for every case

exponential independent of the variable ordering. The problem is that an algorithm for

finding the ideal variable ordering is NP-complete [GJ79].

All the binary Boolean operators on ROBDDs are implemented by the same general al-

gorithm APPLY(op,u1,u2) that computes for two ROBDDs u1 and u2 the ROBDD of the

Boolean operation u1 op u2.
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Figure 2.3: Example for the reduction rules of ROBDDs

The construction of APPLY is based on the Shannon expansion:

u1 (a,b, . . .) op u2 (a,b, . . .)= (a∧u1 (a,b, . . .) op u2 (1,b, . . .))∨(a∧u1 (a,b, . . .) op u2 (0,b, . . .))

The Shannon expansion has to be recursively repeated until u1 and u2 have reached ter-

minal nodes (see figure 2.4). For calculating N&M ’op’ has to be replaced by ’&’. The

new terminal nodes are 0 (N1&M1),0 (N2&M1),0 (N1&M2) and 1 (N2&M2).

10

N3

N2N1

10
M1 M2

M3 =op

a

c

a
N3 M3op

c c
N1 M3op N2 M3op

N2 M2opN1 M1op

0 1op0 0op 1 0op 1 1op

N1 M2op N2 M1op

Figure 2.4: the apply operator
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Figure 2.5: The VerySimpleMachine

2.2 Synthesis of Finite State Machines

In supervisory control theory (SCT), discrete event systems are modeled by controlled

automata and their behaviors are described by formal languages [RW87].

The task of the supervisor is to disable as less transitions of the plant as possible until the

system is restricted to a specified language. This means that only input strings which are

part of the language are allowed.

This language consists of a subset of all possible events. (It is possible that our plant is

only part of a large system and reacts only on some events.) All those events can either

be selectively disabled (then they are called controllable, for instance pressing a button

by the user) or uncontrollable (e.g. the appearance of an error) because the system has no

influence on them.

The target of a good synthesizing algorithm is to allow the largest possible, the so called

supremal controllable, sublanguage.

A FSM is defined as a quintuple:

G = 〈Q,Σ,δ,qi,Qm〉

where Q is the set of possible states, Σ the set of all controllable and uncontrollable events,

the transition function δ : Q×Σ→Q, the initial state qi ∈Q and the set of all marked states

Qm ∈ Q.

The transition function δ(q,σ) gives us for the actual state q ∈ Q and an event σ ∈ Σ the

next state. If the event is not possible, an empty string is returned.

To guarantee a compact notation a supervisor Gname is always associated with its subsets

Qname,Σname,δname,qi, name and Qm, name.

As example scenario the VerySimpleMachine (figure 2.5) has been created. The machine

can process one work piece at a time. The two events alpha and beta indicate the beginning

and the end of the machine processing a work piece.

The transition function of the VerySimpleMachine returns for the state q0 and the event

al pha the next state q2.
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For the alphabet Σ we have the partition

Σ = Σc ∪Σuc

where Σc is the subset of controllable and Σuc the subset of uncontrollable events.

The event ’alpha’ of the VerySimpleMachine is controllable and ’beta’ is uncontrollable.

Σc = {alpha}

Σuc = {beta}

2.2.1 Linguistic Preliminaries

The next step is to guarantee that the supervisor is reduced on reachable states, control-

lable and for some cases additionally nonblocking. Therefore the language L(G) of an

automaton G is introduced.

A sequence of events taken out of the alphabet forms a ’word’ or ’string’. A string con-

sisting of no events is called empty string ε. The length |s| of a string s is the number of

events contained in it. Multiple occurrences of one event are of course possible and are

counted by the number of occurrences.

A language L defined over an event set Σ is a set of finite-length strings formed from

events in Σ.

The connection between languages and automata is easily made by inspecting the finite

state machine of an automaton.

L = L (G) = {s ∈ Σ∗ : δ(q0,s) is defined }

Σ∗ is the set of all strings formed by the event set Σ.

The marked language Lm is the set of all strings leading into a marked state, if the starting

point in the initial state q0 .

Lm = Lm (G) = {s ∈ Σ∗ : δ(q0,s) ∈ QM}
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For event set Σ = {α,β} the VerySimpleMachine describes the language

LVerySimpleMachine = {ε,α,αβ,αβα,αβαβ, . . .}

LM,VerySimpleMachine = {ε,αβ,αβαβ, . . .}

For a string s ∈ Σ∗ a string t ∈ Σ∗ is a prefix if ∃o ∈ Σ∗ : to = s and t ≤ s.

The closure L of a language L is the set of all prefixes of L.

L = {t ∈ Σ∗|∃s ∈ L : t ≤ s}

2.2.2 Synchronous Product

It is very popular to split up the plant (describes the behavior of the machine) and the

specification (the forced behavior of the machine) in small parts. In general a big machine

can often be regarded as a summation of indepentently working small machines.

The generator of the whole plant is calculated by the synchronous product:

Gplant = G1
plant ‖ G2

plant ‖ . . . ‖ GN
plant

and

Gspeci f ication = G1
speci f ication ‖ G2

speci f ication ‖ . . . ‖ GN
speci f ication

The Synchronous Product for G1 = 〈Q1,Σ1,δ1,q0,1,Qm,1〉 and G2 =

〈Q2,Σ2,δ2,q0,2,Qm,2〉 is defined as:

G1 ‖ G2 =
〈
Q1 ×Q2,Σ1 ∪Σ2,δparallel,(q0,1,q0,2),Qm,1 ×Qm,2

〉
(2.2)

δparallel((q1,q2),σ) =





(δ1(q1,σ),δ2(q2,σ)) if σ ∈ Σ1 ∩Σ2

(δ1(q1,σ),q2) if σ ∈ Σ1 ∧σ /∈ Σ2

(q1,δ2(q2,σ)) if σ /∈ Σ1 ∧σ ∈ Σ2

In the scenario both VerySimpleMachines are arranged in a row (figure 2.6). The plant

can be calculated by the parallel composition of two automata (figure 2.7 ).
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work piece VerySimpleMachine1

alpha_1 beta_1 alpha_2

work piece

beta_2

work piece

Buffer

VerySimpleMachine2

Figure 2.6: Two VerySimpleMachines arranged in a row

I|I

B|Ialpha_1

I|B
alpha_2

B|B
beta_2 beta_1

beta_1

alpha_2

beta_2

alpha_1

Figure 2.7: The Synchronous Product of two VerySimpleMachines

The two machines shall be arranged with a buffer to implement a two-stage production

process. Each work piece must first be processed by SimpleMaschine1, then placed in

the buffer, and finally processed by SimpleMaschine2. The buffer capacity is restricted

to one work piece. Both plant models act independently. The buffer imposes a condition

regarding the interaction of both machines and is modeled as specification, where the

event beta_1 fills the buffer and alpha_2 empties the buffer (figure 2.8).

For the calculation of the supervisor the first step is to calculate the synchronous product

(figure 2.9) of the plant and the specification as described in equation 2.2.

2.2.3 Reachability Analysis

The standard reachability algorithm is based on a breath-first traversal [CBM90] of finite-

state machines. It considers all states and transitions reachable from the initial state q0.

The execution process picks up for each step all states the can be reached from set of

reachable states in one step and pushes them on the set of reachable states. The end is

reached when the set of new reachable states is empty.

E F
beta_1

alpha_2

Figure 2.8: The specification for the VerySimpleMachine
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I|I|E

B|I|Ealpha_1

B|B|F

B|I|F beta_2

B|B|Ebeta_2

I|B|Fbeta_1

alpha_2

I|I|F

beta_1

alpha_1

beta_2

I|B|E

beta_2
alpha_1

alpha_1

alpha_2

Figure 2.9: The Synchronous Product of Plant and Specification

1 ReachabilityAnalysis(G)

2 {

3 k = 0

4 QR k = q0

5 repeat

6 {

7 k++;

8 QR k = QR k−1 ∪{q′ ∈ Q : (∃q ∈ QR k−1 ∧∃σ ∈ Σ : q′ = δ(q,σ))}

9 }

10 until( QR k == QR k−1)

11 Q = QR k

12 }

2.2.4 Supremal controllable Sublanguage

Supremal controllable sublanguages have been shown to play an important role in supervi-

sor synthesis. Hence, the formal synthesis problem for a supervisor is posed as synthesiz-

ing the largest possible controllable and observable sublanguage of a specified language.

Supremal controllable sublanguages were discussed in [WR87] and a recursive algo-

rithm was developed to compute a supervisor out of a given language (e.g. modeled as a

specification-generator).

We call our supervisor S controllable if for every state uncontrollable events are not for-

bidden.

L (K)Σu ∩L (G) ⊆ L (K)

where K is the implementation of a supervisor and L (K) its language.
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Figure 2.10: The Supervisor

1 Controllability(Gplant, Gplant‖spec)

2 {

3 Qproblem =
{
(q,a) ∈ Qplant‖spec :

(
∃σ ∈ Σuc : δplant (q,σ) 6= /0∧δplant‖spec ((q,a) ,σ) = /0

)}

4

5 while(Qproblem != /0)

6 {

7 remove all transitions δplant‖spec, i with δplant‖spec ((q̃, ã) , σ̃) ∈ Qproblem

8

9 Qproblem =
{
(q,a) ∈ Qplant‖spec :

(
∃σ ∈ Σuc : δplant (q,σ) 6= /0∧δplant‖spec ((q,a) ,σ) = /0

)}

10 }

11 }

2.2.5 Nonblocking

A Discrete Event System is nonblocking if

L (G) = Lm (G)

The following algorithm makes a given generator nonblocking:

1 Nonblocking(G)

2 {

3 k = 0

4 QNB k = QM

5 do

6 {

7 k++;

8 QNB k = QNB k−1 ∪{q ∈ Q : (∃q′ ∈ QNB k−1 ∧∃σ ∈ Σ : q′ = δ(q,σ))}

9 }

10 while( QNB k == QNB k−1)

11 Q = QNB k

12 }
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2.3 Representation of Discrete-Event-Systems as Binary

Decision Diagrams

A major reason preventing Supervisory Control Theory from achieving acceptance in in-

dustry is the problem of exponential state explosion. A BDD is an efficient data structure

which can reach logarithmic compression of the state space as soon as memory and run-

time performance are improved by efficient reachability searches.

Before working on efficient operations on BDDs, the FSM of our generator has to be

transformed as described in [GVSSV07].

For the finite state machine A := 〈Q,Σ,δ,qi,Qm〉 the characteristic function is defined as

T : Q×Σ×Q →{0,1}. For the coding of N elements at least ⌈lgN⌉ binary variables are

used.

• eQ(q),q ∈ Q is the state coding, eq : Q → B n n ≥ ⌈log2 (|Q|)⌉

• eΣ(σ),σ ∈ Σ is the event coding eσ : Σ → B n n ≥ ⌈log2 (|Σ|)⌉

• eQ′(q′),q′ ∈ Q is the next state coding eq′ : Q → B n n ≥ ⌈log2 (|Q|)⌉

The state function χQ, event function χΣ, next state function χQ′ and a binary transition

relation function χT are defined as

• χQ (q) =





1 if q ∈ Q

0;

• χΣ (σ) =





1 if σ ∈ Σ

0;

• χQ′ (q′) =





1 if q′ ∈ Q′

0;

As example, the transfer-function VerySimpleMachine of figure 2.5 has been converted to

a binary function. At least 2 bits are used for the events because the first event ’alpha’ has

the index 1. In the implementation later on, the first 10 bits are reserved for event coding.

These variables have the same global index.
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The following functions define the coding of the events, states and nextstates:

• eQ(′idle′) = [0,1]

• eQ(′busy′) = [1,0]

• eΣ(′al pha′) = [0,1]

• eΣ(′beta′) = [1,0]

• eQ′(′idle′) = [0,1]

• eQ′(′busy′) = [1,0]

χQ(q0,q1) =∨ q1q0∨ q1q0

χΣ =∨ σ1σ0∨ σ1σ0

χQ′(q0,q1) =∨ q′1q′0∨ q′1q′0

(2.3)

χT (q0,q1,σ0,σ1,q
′
0,q

′
1) =

(
q1q0σ1σ0q′1q′0

)
∨

(
q1q0σ1σ0q′1q′0

)
(2.4)

Figure 2.11 represents χT (2.4) as BDD. For the following algorithm the transition func-

tion χT , χQ respectively χΣ are replaced by their shortcuts T Q and Σ are used. If you

compare it with the representation of the transition function of the VerySimpleMachine

as function-table (2.12) the high compression rate and compact representation is obvious.

2.4 BDD-based Synthesis of DES

The next step is to transfer the algorithm from the previous section to the BDD problem.

It is very important, that all events have the same binary coding and variable indexes.

Before calculating the synchronous product, it is important that the variables for the state

coding of both automata are free of intersection.

The variables CurrentStates, NextStates and AllEvents of the following algorithm are sets

with all variables used for the respective coding.
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Figure 2.11: BDD of the transition relation of the VerySimpleMachine

1 parallel(G1,G2)

2 {

3 Check if state codings are free of intersection

4 If not correct by replacing variables

5 T = T 1 & T 2

6 }

1 reachable(Q0, T )

2 {

3 T̃ = ExistentialQuantification(T ,AllEvents)

4

5 Qreach = false

6 Qreach,new = Q0

7

8 do

9 {

10 Qreach = Qreach,new

11 Qtemp = ExistentialQuantification(Qreach & T̃ ,CurrentStates)

12 Qtemp = SwapVariables(Qtemp, NextStates, CurrentStates)

13 Qreach,new = Qreach | Qtemp

14 }
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15 while(Qreach = Qreach,new)

16 Q = Qreach

17 }

1 nonblocking(QM, T )

2 {

3 T̃ = ExistentialQuantification(T ,AllEvents)

4

5 Qnb = false

6 Qnb,new = QM

7

8 do

9 {

10 Qnb = Qnb,new

11 Qtemp = SwapVariables(Qnb, NextStates, CurrentStates)

12

13 Qtemp = ExistentialQuantification(Qtemp & T̃ ,NextStates)

14

15 Qnb,new = Qnb | Qtemp

16 }

17 while(Qnb = Qnb,new)

18 Q = Qnb

19 }

1 controllable(Tplant, Tparallel, Σuc)

2 {

3

4 Qproblem = Tparallel - (Tplant & Σuc)

5 Qproblem = ExistentialQuantification(Qproblem, AllEvents & NextState)

6

7 while(Qproblem != false)

8 {

9 Qproblem = SwapVariables(Qproblem, NextStates , CurrentStates)

10 T -= Qproblem

11

12 Qproblem = Tparallel - (Tplant & Σuc)

13 Qproblem = ExistentialQuantification(Qproblem, AllEvents & NextStates

)

14 }

15 do

16 }
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2.5 Disjunctive partial transition relations

The main problem with composition of large sets of automata is that the total transition

relation becomes extremely complex. [BCL91], [BLVA06] and [GV01] show that splitting

the transition into a set of less complex sub relations, e.g. the disjunctive transfer relation,

is a very useful method to get a significant smaller memory usage.

This can be traced back to the fact that BDDs do not grow linear by the number of sat-

isfying variable assignments (see figure 2.13). The main reason behind the intermediate

BDD size explosion is that new elements are added to the set Qk in such pseudo-random

order that its BDD cannot be reduced efficiently. For the monotonic BDDs of randomly

growing set with 2n elements the same behavior can be observed.

For a small size it is very unlike that reduction rules are applicable. The best efficiency

can be reached if half of the variable assignments end in a terminal one and the rest in

zero. In general the transition function is in the very beginning of the left part of the graph.

A satisfaction of 100% would mean, that every state has a transition for every event with

each state. Even for non-deterministic automata this is not possible.

For a partitioned representation of the transition relation BDDs are vital smaller and the

sum of nodes of all partial transition functions is approximately as big as the monolithic

transition function.

The reason that BDD reduction is so important relates to the time-complexity of certain

BDD operations. Under normal conditions, BDD operations have a time complexity of

O(|x| |y|) , where |x| and |y| denotes the number of nodes in the BDDs x and y. Besides

this finding a good variable ordering is still very important and can be applied to each

sub-automata.

In addition this effect is amplified in several dimensions for a reachability search that

utilizes breadth-first traversal.

A complex discrete event system can often be efficiently represented in modules. In this

case, this means that the user models the system by small subsystems. Instead of cal-

culating the monolithic transition relation, the splitting is used for setting up a partial

transition relation. A transition relation is partitioned if it is represented as a conjunction

or disjunction of terms.

The main reasons for resorting to problem decomposition when facing complex tasks are

quite obvious: A ’divide-and-conquer’ approach is expected to reduce memory require-

ments and in the best case it may also improve time efficiency. Another advantage of this
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approach is that we get rid of memory limitations of traditional BDD packages.

This means that for a modular system of N finite automata

A = A1 ‖ A2 ‖ . . . ‖ AN

the monolithic transition relation is

T = T 1 ∧T 2 ∧ . . .∧T N

The dependency set of an automaton is defined as the set of automata that shares at least

one event excluding itself.

D
(
Ai

)
= Ai ∪

{
A j : Σi ∩Σ j 6= /0

}

Furthermore the dependency set of a partial transition relation is needed:

D
(
T i

)
=

{
T j : A j ∈ D

(
Ai

)}

Now a rule for calculating the i-th partial transition relation is needed and had been proven

by [BLVA06]:

T̃ i =
{〈

q1q2 . . .qN ,σ,q′1q′2 . . .q′N
〉

: σ ∈ Σi ∧
〈
q1q2 . . .qN ,σ,q′1q′2 . . .q′N

〉
∈ T

}

The monolithic transition relation is the disjunction of all partial transition relations:

T = T̃ 1 ∨ T̃ 2 ∨ . . .∨ T̃ N

Statetupels(a,b) =





1 if ∃ q ∈ Q : eQ (q) = a∧ eQ′ (q) = b

0;

1 partial_parallel(G1,G2,. . ., GN)

2 {

3 Check if state coding are free of intersection

4 If not correct by replacing variables

5

6 for(i = 1:N)

7 {

8 T̃i = Ti

9

10 foreach(Tj in D
(
T i

)
)

11 {

12 Tshared = Tj & Σi

13 Tsingle = Statetupels & (Σi - Σ j)

14 T̃i &= Tsingle | Tshared

15 }



2.5. DISJUNCTIVE PARTIAL TRANSITION RELATIONS 19

16 foreach(Tj not in D
(
T i

)
)

17 {

18 T̃i &= Statetupels & Σi

19 }

20 }

1 partial_reachable(Q0, T [N])

2 {

3 Qreach = false

4 Qreach,new = Q0

5

6 do

7 {

8 Qreach = Qreach,new

9 Qtemp = false

10 for(i = 1:N)

11 {

12 Qtemp = ExistentialQuantification(Qreach & T [i],CurrentStates &

AllEvents)

13 }

14 Qtemp = SwapVariables(Qtemp, NextStates, CurrentStates)

15 Qreach,new = Qreach | Qtemp

16 }

17 while(Qreach = Qreach,new)

18 Q = Qreach

19 }

1 partial_nonblocking(QM, T [N])

2 {

3 Qnb = false

4 Qnb,new = QM

5

6 do

7 {

8 Qnb = Qnb,new

9 Qtemp = SwapVariables(Qnb, NextStates, CurrentStates)

10

11 for(i = 1:N)

12 {

13 Qtemp = ExistentialQuantification(Qtemp & T [i],NextStates &

AllEvents)

14
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15 Qnb,new = Qnb | Qtemp

16 }

17 while(Qnb = Qnb,new)

18 Q = Qnb

19 }

1 partial_controllable(Tplant[N], Tparallel[M], Σuc)

2 {

3 Tcrit = false

4 for(i = 1: M)

5 {

6 Tcrit |= ExistentialQuantification((Tplant[i] & Σuc), NextStates);

7 }

8 for(i = 1: N)

9 {

10 Tcrit -= ExistentialQuantification((Tparallel[i] & Σuc), SpecStates &

SpecNextStates);

11 }

12 Qproblem = ExistentialQuantification(Tcrit , AllEvents & NextStates)

13

14 while(Qproblem != false)

15 {

16 Qproblem = SwapVariables(Qproblem, NextStates , CurrentStates)

17

18 for(i = 1: N)

19 {

20 T [i] -= Qproblem

21 }

22

23 Tcrit = false

24 for(i = 1: M)

25 {

26 Tcrit |= ExistentialQuantification((Tplant[i] & Σuc), NextStates);

27 }

28 for(i = 1: N)

29 {

30 Tcrit -= ExistentialQuantification((Tparallel[i] & Σuc), SpecStates &

SpecNextStates);

31 }

32 Qproblem = ExistentialQuantification(Tcrit , AllEvents & NextStates)

33 }

34 }
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sigma1 sigma0 q0 q‘0 q1 q‘1 f(x)

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 0 1 0 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 0 0 1 0

0 0 1 0 0 0 0

0 0 1 0 1 1 0

0 0 1 0 1 0 0

0 0 1 1 0 1 0

0 0 1 1 0 0 0

0 0 1 1 1 1 0

0 0 1 1 1 0 0

0 1 0 0 0 1 0

0 1 0 0 0 0 0

0 1 0 0 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 0 1 0 0 0

0 1 0 1 1 1 0

0 1 0 1 1 0 0

0 1 1 0 0 1 1

0 1 1 0 0 0 0

0 1 1 0 1 1 0

0 1 1 0 1 0 0

0 1 1 1 0 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 0 0 0 0

1 0 0 0 1 1 0

1 0 0 0 1 0 0

1 0 0 1 0 1 0

1 0 0 1 0 0 0

1 0 0 1 1 1 0

1 0 0 1 1 0 1

1 0 1 0 0 1 0

1 0 1 0 0 0 0

1 0 1 0 1 1 0

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 0 1 1 0 0 0

1 0 1 1 1 1 0

1 0 1 1 1 0 0

1 1 0 0 0 1 0

1 1 0 0 0 0 0

1 1 0 0 1 1 0

1 1 0 0 1 0 0

1 1 0 1 0 1 0

1 1 0 1 0 0 0

1 1 0 1 1 1 0

1 1 0 1 1 0 0

1 1 1 0 0 1 0

1 1 1 0 0 0 0

1 1 1 0 1 1 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

1 1 1 1 0 0 0

1 1 1 1 1 1 0

1 1 1 1 1 0 0

Figure 2.12: function table of the transition relation of the VerySimpleMachine
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Figure 2.13: average size of a random BDD
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Chapter 3

Implementation

The task of the Bachelor thesis was to create a software environment that implements

the theoretic approaches and offers the possibility to make experiments with examples

of higher complexity. ’libFAUDES’ is a C++ library that implements data structures and

algorithms for finite automata and regular languages and there was evidence to suggest

creating a new plug-in for it. In this chapter the most considerable challenges and their

solutions by implementing beforehand described algorithm are presented. If you are in-

terested in a detailed description of the software have a closer look to the user reference

of ’libFAUDES’. All required information can be found under ’C++ API/PlugIns/BDD

Synthesis PlugIn’.

3.1 Wrapper class and BDD library

For the implementation of the basic BDD operations, standard and performance optimized

libraries are used. A special wrapper class (bds_wrapper) provides the advantage to use

a large area of available BDD libraries. Each of them has different advantages. So it was

not evident which of them should be used. BuDDy provides a comfortable C++ interface,

nice features and functions that were later on adapted on the wrapper class, examples for

BDD based automaton traversing and finally a lowly constricting license. But perhaps one

of the following listed (or perhaps your own implementation) is even better.

BuDDy [bud10] [AS07] [SW07] is a Binary Decision Diagram package that provides all

of the mostly used functions for manipulating BDDs. The package also includes func-

tions for integer arithmetic such as addition and relational operators. BuDDy started as a

technology transfer project between the Technical University of Denmark and Bann Vi-
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sualstate. The BDD package presented here was made as part of a Ph.D. project by Jorn

Lind-Nielsen on model checking of finite state machines. The package has evolved from

a simple introduction to BDDs to a full blown BDD package with all the standard BDD

operations, reordering and a wealth of documentation. First of all a program needs to ini-

tialize the BDD package. Getting the most out of any BDD package is not always easy. It

requires some knowledge about the optimal order of the BDD variables. If we allocate as

much memory as possible from the very beginning, then BuDDy does not have to waste

time trying to allocate more whenever it is needed. Included in the BDD package is a set of

functions for manipulating values of finite domains. These functions are used to allocate

blocks of BDD variables to represent integer values instead of only true and false. This

concept was adapted and improved and is now generally usable for the wrapper class.

The ideal implementation for a specific application can only be found by trying out for

different test cases. To make this possible, the plug-in is not restricted. All calculations

are done with the wrapper-class that is based on templates and new BDD libraries can be

connected with little work.

The functions of BuDDy that the wrapper class uses are listed below. More de-

tails about this package can be found in the package documentations, available at

http://www.itu.dk/research/buddy.

• bdd_init

• bdd_done

• bdd_varnum

• bdd_setvarnum

• bdd_ithvar

• bdd_nithvar

• bdd_apply

• bdd_exist

• bdd_replace

• bdd_newpair

• bdd_freepair
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• bdd_fprintdot

• bdd_file_hook

• bdd_nodecount

Here is a list of the most common BDD implementations. It would be a rewarding task to

try out one or the other.

• ABCD: The ABCD package was implemented by Armin Biere at the Johannes Ke-

pler Universität in Linz. ABCD is very small and fast.

• CMU BDD, BDD package by Carnegie Mellon University, Pittsburgh. Although

Garbage collection, dynamic variable reordering and multi-variable quantification

are supported.

• CrocoPat, BDD package and a high-level querying language, Ecole Polytechnique

Fédérale de Lausanne (EPFL), Switzerland

• CUDD [cud09]: BDD package, University of Colorado, Boulder. The package pro-

vides a large set of operations on BDDs, ADDs, and ZDDs, functions to convert

BDDs into ADDs or ZDDs and vice versa, and a large assortment of variable re-

ordering methods.

• DDD: A C++ library with support for integer valued and hierarchical decision dia-

grams.

• JINC: A C++ library developed at University of Bonn, Germany, supporting several

BDD variants and multi-threading.

• OBDD: A Haskell package for OBDD

The wrapper-class itself provides the following operations:

• operator&=

• operator|=

• operator-=

• operator==
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• operator!=

• operator=

• nodecount: returns the number of nodes of the BDD

• bddtrue: returns a BDD for the function f(x)=true.

• bddfalse: returns a BDD for the function f(x)=false.

• var: returns a BDD that is true for the variable ’index’.

• nvar: returns a BDD that is true for the negated variable ’index’.

• unique: unique quantification of variables.

• exist: existential quantification of variables

• replace: variable replacement

• writeGraph: make a gif out of the BDD.

• DotWrite: make a ’.dot’ file for the generator.

• useVar: allocate Variable

3.2 Domain

The problem was, that a transition relation consists of tuples like

〈q1,q2, . . . ,σ,q′1,q
′
2, . . .〉 q1 ∈ Q1, . . . ,σ ∈ Σ,q′1 ∈ Q′

1, . . ..

This implies for the Boolean transition function that we need for every element of the

tuple |Qi| respectively |Σ| variables for representation.

For this case a domain class was introduced. It administrates for every sub domain the

amount of variables (see figure 3.1) and provides a function to transfer a function from

one domain to another. The variable size is extensible because the amount of sub domains

(for each partial transition relation one sub domain is needed) and variables per subdomain

(new states can be added step by step) is unknown at initialization time.
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domain

sub domain

v ariables

Figure 3.1: Construction of a domain

domain

sub domain

variables a b d g i

Figure 3.2: Exemplary construction of the domain

This means for instance: If we want to get the binary function that returns true for the

value for a specific sub domain the member function

ithvar(uint sub domain, uint value)

at first looks up if there exist at least ⌈log2 (value)⌉ variables for the sub domain. If not,

variables are added. Finally the correct function is returned. For a domain like printed

in figure 3.2 the value 1410 = 011102 corresponds with the binary function f (a,b, . . .) =

igdba and the BDD in figure 3.3.

3.3 bddGenerator

The bddGenerator is the most important class in the plug-in. It saves the names and indices

of the states, the transition and many attributes like marked states, controllable events or

initial state. It can be constructed on different ways. The most common is read a ’.gen’-

file. Of course there exists also an import-function to transfer a cGenerator or vGenerator

to a bddGenerator.

The bddGenerator is internly build up by one or more bddPartGenerators. If a new bd-

dGenerator is created it has always one BDDPartGenerator. It is responsible for saving

the BDD for the transition-function and the state coding.
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Figure 3.3: BDD of the binary function f (a,b, . . .) = igdba

A bddPartGenerators is an extended partial transition relation. Beside the BDD it provides

a couple of manipulative functions on the BDD. For instance replacing variables and

transfer to other domains.

If you call the function parallel, the first step is to copy all bddPartGenerators from both

passed bddGenerator to the resulting. Then the transition functions are transferred to the

new domain. This means for example that generator1 uses variable 0 to 15 (this means

6 variables for state-coding, 3 for current and 3 for the next states and 10 variables are

always reserved for the event-coding) and generator2 the variables 0 to 13 (it has at most

22 states).

If we would calculate the partial transition function simply by T = T1 ∧T2 we get an in-

tersection of the variables. Consequently, the first sub domain of the resulting generator

needs 6, the second 4 variables and each variable of the old sub domain has to be trans-

ferred to the corresponding new variable. For the previous example the first variable of

sub domain 1 in generator2 (index: 10) has to be replaced by the new variable with index

16. The old and new domains can be seen in figure 3.4.

If the variables have been updated in every BDD the next step is to calculate the partial

transition relation. You can read this in the theory part.
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sub domain
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bddGenerator1

bddGeneratorResult

bddGenerator2

Figure 3.4: Domain before and after parallel-composition
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Chapter 4

Evaluation

To put the preceding algorithm on the test, time measurements with significant examples

followed the implementation. All experiments ran on a 2-GHz Intel-Core-Duo machine

with a 2-Gbyte main memory.

I expected to get the best result for the parallel composition of systems with independent

events. For this case, the so called ’testmachine*’ (see figure 4.1) was introduced. It has

three independent events ’alpha*”, ’beta*’ and ’gamma*’. Now it is possible to calculate

synchronous products up to a magnitude of 1017 states in a few minutes. The synchronous

product of 35 testmachines has 335 ≈ 5∗1016 states and more than 1017 transitions. So it

is obvious that a representation is only possible by symbolic methods and iterating over

the state set would take hundreds of years.

As mentioned in the theory part, the calculation of the synchronous product itself has

a polynomial complexity. Nevertheless the execution-time of the parallel() function is

increasing exponential (see figure 4.2 for a shielded out reachability analysis we get the

expected complexity. In this point, further improvements of the algorithm seem to be very

promising.

The second graph (see figure 4.3) compares the ’Synthesis Plug-In’ with the ’BDD-

A

Balpha*

C

beta*

gamma*

Figure 4.1: testmachine for performance measurements
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Figure 4.2: Execution time for computation of the parallel composition of up to 35 test-

machines with and without reachability analysis

Synthesis Plug-In’. By now, calculations of the synchronous product of 13 systems took

around 100 seconds. In the same time, the new BDD plug-in handles 33 automaton. One

reason for this is the polynomial growing of the memory for the transition relation in

comparison to exponential growing for the standard algorithm. The increasing node size

of the BDDs is shown in figure 4.4.

In reality, it’s very inconvenient to get completely independent systems. For this case

’gamma*’ was changed to a global event ’gamma’. As we can see in figure 4.5 the com-

putation is a nuance faster because of the smaller resulting transition function.

Above, I wrote about the performance advantage of partial transition relations. Unfortu-

nately it is not possible to show the performance advantage. The problem is that there

exists no monolithic implementation of the algorithm. In figure 4.6 the memory overlay

of the partial transition relation is pointed out. On figure 4.7 and 4.8 the BDDs of the

monolithic and partial transition function are showed. The additional memory is used for

the multiple declaration of the event-variable branch and shared events. This means if an

event is used in generator A and B, the partial transition functions of both automata have

a true assignment for this event. For the monolithic way both branches can be reduced to

one.
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Figure 4.7: BDD of the monolithic transition relation for the parallel composition of 2
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Chapter 5

Conclusion

After this Bachelor thesis it is possible to try out different application cases of discrete

event synthesis with BDDs on an open source software platform. The plug-in for the

libFAUDES has reached a state where experiments show fast performance results. Of

course it was not possible to use the time frame of a Bachelor thesis to create a closed

project of such complexity. Let it rather be an impulse for further improvements and

enlargement. The performance results were very impressing and make hope that this plug-

in has a chance for future student projects.

I think the next steps will be to provide functions such as that the ’Simulator’ or ’IO

Device’ plug-in can directly work with the bddGenerator without transforming it to a

cGenerator or vGenerator. The synthesis elevator example from the IO plug-in already

returns a correct solution. But the performance advantage is lost because the bddGenerator

has to be exported for writing the solution to a ’.gen’ file or simulating it.

Besides this, new BDD libraries can be adapted to the wrapper-class or replaced by a new

wrapper that uses Interval Decision Diagrams (IDDs) instead as a task for the future.
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